
Individual Local Checking of Global Consistency in
Heterogenous Multimodeling:
The Story behind the Scenery

Harald König, Zinovy Diskin

Bericht Nr.: 02016/01

Impressum

Forschungsberichte der FHDW Hannover – Veröffentlichungen aus dem Bereich Forschung und
Entwicklung der FHDW Hannover.

Herausgeber: Die Professoren der FHDW Hannover
Fachhochschule für die Wirtschaft Hannover
Freundallee 15
30173 Hannover

Kontakt: techrep@fhdw.de

ISSN 1863-7043

Submitted to:
FHDW Forschungsberichte

c© H. König, Z. Diskin
This work is licensed under the
Creative Commons Attribution License.

Individual Local Checking of Global Consistency in
Heterogenous Multimodeling: The Story behind the Scenery ∗

Harald König
University of Applied Sciences FHDW Hannover, Germany

harald.koenig@fhdw.de

Zinovy Diskin
NECSIS, McMaster University, Canada

zdiskin@uwaterloo.ca

Software design requires deployment of interdependent models conforming to different metamod-
els. This set of models is called a multimodel, and it must satisfy a set of global constraints which
simultaneously constrain multimodel components.

Categorically, a multimodel is a diagram and a straightforward approach to global consistency
checking constructs the colimit of component metamodels, adding, perhaps, new global constraints,
constructs the colimit ogf models, and checks the latter colimit against the constraints in the former
one. Being a natural definition for global consistency, these steps can not be used algorithmically
because of two major practical drawbacks: they involve costly (meta)model matching to specify
overlaps, and they require building big and unfeasible colimit metamodels and models.

The present paper presents a new algorithm to check each global constraint individually, and as
local as possible, i.e., only using those (meta)model elements that affect the validity of the constraint.
We present a theorem which secures equivalence of global definition and local algorithm.

1 Introduction

Modeling a complex system normally results in a multimodel, i.e., a set of heterogenous models each one
conforming to its own metamodel. A fundamental fact about multimodeling is that the merge of legal
local models can result in a model violating the global constraints declared in the integrated metamodel.
This can be easily observed even for the simple homogeneous case, when all local models, and hence
their merge, are instances of the same metamodel. For example, suppose that the metamodel of a do-
main says that (car insurance) contracts are uniquely identified by a field ’contract-id’, i.e., the field has
imposed a unique key constraint. Then the merge of two perfectly legal local instances can violate the
constraint, if there are (physically) different insurance contracts with the same ’contract-id’ but they do
not appear in the same instance.

Heterogeneous multimodeling expands the issue of global consistency enormously. For example,
consider a metamodel M1 that extends the Contract metamodel above with attribute ’contractType’ (with
values ’standard’, ’extended’), and a metamodel M2 that extends the metamodel with reference ’traffic
telematics enabled’ to class ’Contract’. Suppose that the domain is subject to the constraint that only
extended contracts can be controlled via traffic telematics. This global constraint cannot be declared in
either of the metamodels (the first one knows nothing about telematics, the second one does not know
about contract types), yet checking its validity for a multimodel (τ1,τ2) with τ1,2 being legal instances of

∗This work is supported by the Automotive Partnership Canada via the Network on Engineering Complex Software Intensive
Systems (NECSIS)

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 The Story

M1,2 is important. A more complex example is consistency between a UML sequence diagram specifying
collaborative behavior, and a statechart specifying a state machine protocol for that behavior. An obvious
consistency requirement that traces specified by the sequence diagram should be allowed by the statechart
is again global and cannot be declared in either of the local metamodels. Following [7], we call such
requirements inter-metamodel constraints.

In general, complex relations of metamodels are diagrams D in a suitable category, metamodels are
objects, relations are arrows between them and probably auxiliary objects. A straightforward approach
to global consistency checking would require construcing the colimit of D (yielding contracts with type
and telematics information in the above example), adding, perhaps, new global constraints to this merge
(’only extended contracts can be controlled via traffic telematics’), merging component models in the
same way, and checking the model merge (again colimit) against the constraints over the metamodel
merge. In fact, this specification can be regarded as a definition of global consistency of a multimodel.
However, using this definition algorithmically as a specification of a workflow for global consistency
checking would be impractical because of (a) costly (meta)model matching needed to specify the over-
laps, and (b) necessity to build big and unfeasible merges of metamodels and models.

A more efficient approach is already proposed in [7, 2]. It prescribes to do matching, merging
and checking not for entire component models but for certain projections to the respective metamodel
portions by grouping adjoint constraints accordingly (partially local). For exactly one constraint under
consideration and projection to the smallest possible fragment, the approach coincides with ours.

As a first step, the present paper makes this approach more precise for the binary case of two meta-
models. We provide an algorithm for individual constraint checking as local as possible, and prove
equivalence of global definition and local approach. The astonishing fact is that the algorithm makes
checking completely independent of model matching outside the constraint fragments. The equivalence
has already been stated in [7] for the partially local approach, but was not yet proven formally. The gen-
eralization of the algorithm from the binary case to the general case seems to be straightforward whereas
the generalization of the proof from pushout to general colimits is more involved and subject to future
research.

Besides reduced matching and merging workload, additional advantages of the new algorithm are
(a) better tailored and stepwise model repairing (in the per constraint fashion), and (b) possibilities to
realize the living with inconsistency paradigm [9], when non-urgent consistency repairs (together with
the respective matching and merging) can be postponed.

We start the illustration with background considerations concerning underlying categorical struc-
tures, a short report on constraint checking diagrammatically and necessary theoretical results for graph-
like structures (Sect. 2). After having introduced multi(meta)models, we briefly describe the above
mentioned global approach, state the algorithm for the local one and prove their equivalence (Sect.3).
We conclude the paper with possible future research directions in Sect.4.

2 Background

Metamodels are usually specified by UML class diagrams. The compact syntax of the latter hides many
details that need to be explicated and formalized. In this section, we perform this formalization: We
use directed graphs as underlying category, diagrammatic predicates and explain the definition of mul-
timodels. The fourth section provides the necessary theoretical background for the proof of the main
theorem in Sect.3.3. The formalism of diagrammatic constraints, first developed under the name of gen-
eralized sketches [4, 6], and then promoted as the Diagram Predicate Framework, DPF [17, 16], is less

H. König, Z. Diskin 3

owned
Operation

class

0..1

Order

getCustomer()

Class

super

0..1

OnlineOrder
OfflineOrder

getPOS()

Interface
implmnts

Model A

Metamodel M

String
name

1

Comparable

<<interface>>

owned

self.implmnts->size()>=1

or

self.super->size()=1

Order

OfflineOrder

1:super

2:super

OnlineOrder

Operation
Class

class

owned

super

Interface
implmnts

String
name

op2

2:class

2:owned

op1

1:class

1:owned

getPOS
2:name

getCustomer
1:name

Graph A

Graph M with

constraints
[or]

[0..1]

[1..1] [0..1]

Comparable
1:implmnts

owned

Figure 1: UML model and metamodel represented as typed graph

known, and we present in Sect. 2.1 its basics in the amount needed for our work in the paper to make
it self-contained. Sect.2.2 introduces multimodels and Sect.2.3 lists some basic facts neeeded for the
forthcoming proof.

2.1 Diagrammatic Constraints

A (directed multi-)graph G = (V,E,src, tgt) consists of a set V of vertices (or nodes), a set E of edges,
and two functions src : E→V , tgt : E→V that assign to each edge its source and target. Writing x ∈ G
means that x is a node or an edge of G. We depict graphs in the usual way: vertices are ellipses (or
circles) and edges are arrows from their source to their target vertex, cf. Fig.1, graphs A and M. A
graph morphism f : G→ G′ between graphs G = (V,E,src, tgt) and G′ = (V ′,E ′,src′, tgt ′) is a pair of
functions fV : V →V ′ and fE : E→ E ′ preserving the incidence between vertices and edges, i.e. ∀e ∈ E :
fV (src(e)) = src′(fE(e)), fV (tgt(e)) = tgt ′(fE(e)). Since the definition of f on an edge e determines the
mapping on e’s source and target, we will sometimes describe graph morphisms by giving its mapping
behavior on edges only. G denotes the category of graphs and graph morphisms.

The left lower quadrant of Fig. 1 presents a fragment of a metamodel for UML class diagrams with
several constraints declared. Three multiplicity constraints are depicted in the usual UML style. They
prescribe (i) each operation to have a unique name and (ii) belong to at most one class, and (iii) prohibit
multiple inheritance. The more complex OCL-constraint (the coloured memo) for classes shall guide
developers to code their programs in a polymorphic style (if there is no superclass, there should be
at least one interface implementation and vice versa). The left upper quadrant shows a class diagram
instantiating the metamodel.

The right half of the figure shows the translation into a typed graph. The metamodel is presented as
a type graph M with a set of four constraint declarations. Each of them consists of a constraint name
given in square brackets, and the constraint scope shown by dashed lines. The (typed) model is a graph
morphism τ : A→M, i.e. a typing mapping between graphs, which assigns types to every model element,
e.g. τ(Order) = Class, τ(op1) = Operation, τ(getCustomer) = String, as well as τ(1: implmnts) =
implmnts, and so on. We will write a:T , if τ(a) = T . τ is called a typed graph (over M). The object
collection of the category of all typed graph over M will be denoted Mod(M).

A key feature of constraints used in metamodeling is their diagrammatic nature: the set of elements
over which a constraint is declared is actually a diagram of some shape specific for the constraint. For
example, the shape of any multiplicity constraint is a single arrow, while the shape of the or-constraint is

4 The Story

two arrows with a common source, see Table 1.
Name Shape

[0..1] 1
12 // 2

[or] 1 0 02
//

01
oo 2

Table 1: Sample Constraints

To declare a constraint over a metamodel graph M, we rec-
ognize the constraint shape in the graph and visualize it as was
shown in Fig. 1. This recognition is a graph mapping δ : Sc→M
(called (shape) binding) from the arity shape Sc of a constraint
with name c to graph M. E.g. in Fig.1, we have constraint [or]
declared by binding δ : S[or] → M (S[or] is shown in Table 1)
with δ (01) = implmnts, δ (02) = super, i.e. δ (1) = Inter f ace,
δ (0) = Class = δ (2). The set of elements in M the shape is
mapped to, is called the image of the binding.

The pair (c,δ) is called constraint declaration. Note that for the [0..1]-declarations in M we can reuse
shape S[0..1] in two different bindings, one of them mapping edge 12 to edge super, the other mapping 12
to edge class. In the sequel, we write c@δ , meaning constraint c is imposed on metamodel M at image
of binding δ .

In order to check consistency of typed graph τ against a fixed constraint declaration c@δ , we need
to define c’s semantics irrespective to τ . This is done by programming a validator function

VALIDATEc(τ
c : G↓Sc): BOOLEAN

which has input typed graph τc : Ac→ Sc. Semantics is used in the check function:

CHECK(τ : G↓M,c@δ : String×G↓M): BOOLEAN

which, basically, performs two steps:

1. Construct pullback τc : Ac→ Sc of τ : A→M along δ : Sc→M (short: τc = δ ∗(τ)).

2. Return the result of validatec(τ
c).

Thus, semantics of a constraint is defined only once and then reused for each constraint declaration with
this constraint name. We say that τ satisfies c@δ , written τ |= c@δ , if CHECK(τ,c@δ)=true. Model τ

is a legal model over metamodel M, if it satisfies all constraints declared in M.
This mechanism has been decribed in detail in [3, 17]. it can be observed in Fig.2. VALIDATE[or]

returns true if each element of type 0 in Ac has an outgoing edge to some element of type 1 or to some
element of type 2. The image of δ is shown in the lower right part (elements not in the image are veiled).
A is restricted (top right quadrant), Ac is the domain of τc. Obviously, VALIDATE[or](B) = true.

Note the ”pullback intelligence”: For each class-instance in A, we have to create two vertices in Ac,
because we must incorporate their two possible roles as subclass (source of edge super) and superclass
(target of edge super).

2.2 Multimodeling

Modeling a complex system normally results in a multimodel, i.e., a set of heterogenous models each one
conforming to its own metamodel. Besides class diagrams, other types of UML diagrams are produced,
for instance sequence diagrams, statecharts, activity diagrams, etc. Even class diagrams may conform
to different metamodels: Business analysts may use behavioural specifications only [10] (no attributes
or associations), whereas in another modeling team class models are more technically oriented and as-
sociations and attributes are used. In all cases the models collectively represent a single system to be
build and any formal treatment has to consider overlaps, i.e. the definitions of common terminology in
different models. E.g. (meta) concepts class occur in the above mentioned behavioural specifications

H. König, Z. Diskin 5

Operation

class

owned

String

name

0
1

im
p

lm
n
ts

,

0
2

s
u
p

e
r

M

[0..1]
[0..1]

owned
1 2

01

[or]

0
02

S
[or]

Order

OfflOrd

1:super

2:super

OnlOrd
A

Comp
1:implmnts

Class

super

Interface
implmnts

[or]

Order:1

OfflOrd:1

1:02

2:02

OnlOrd:1

Order:0

OfflOrd:0

OnlOrd:0

Comp:2
1:01

A
c

(Pullback)

c

δ

Figure 2: Function CHECK

and in technical metamodels. Names of common concepts, however, may differ: One development team
may use the term String for character strings, the other may use Text, yet speaking of the same thing.

In the binary case (two metamodels M1 and M2), overlaps can be specified by two graph mappings

M1 M0
r1oo r2 // M2

in which M0 contains all common concepts. Any pair x1 ∈M1 and x2 ∈M2 is declared to be the same, if
there is x ∈M0 such that r1(x) = x1 and r2(x) = x2. We call the pair (the span) (r1,r2) a multimetamodel.

A multimetamodel is shown in Fig.3: M1 is the metamodel already used in Fig.1, but without con-
straints. M2 is a more technical metamodel which specifies Classes with superclasses, attributes and
directed associations. M0 is the overlap specification. It declares Class together with its super-relation
to be in the overlap of both components and, by defining r1(Str T xt) = String and r2(Str T xt) = Text it
also states that String and Text are the same concept. Identity relation are represented as shaded vertices.
The pushout M1 +M0 M2 represents the merge of the multimetamodel components.

Operation Class

class

owned

super
Interface implmnts

String
name

1

1

owned

2

Attribute

Class

own

Text
name

Assoc

src

tgt
Class

Str_Txt

supersuper

2

0

Attribute

Class

own

Str_Txt
name2

Assoc
src

tgt

super

Operation

Interface

owned

implmnts

class

owned

name1

21

1 2M0

Figure 3: Multimodel and Merge

6 The Story

2.3 Facts for Topoi

A topos is a category with finite limits and colimits, which is cartesian closed, and where the subobject
functor is representable. We list some facts:

1. G is a topos [13].

2. In topoi, pushouts with one monic leg are Van Kampen Squares [14].

3. There is an exact charaterization of the Van Kampen property for presheaf topoi. It shows that
pushouts may also enjoy this property although both legs are not monic [19].

4. If, in a topos, the squares

Ai
ai //

fi
��

A
g
��

Mi
gi // M

are pullbacks1 for i ∈ {1,2}, then so is

A1 +A2
[a1,a2] //

f1+ f2
��

A
g
��

M1 +M2
[g1,g2] // M

[11]

5. Pullbacks preserve epis as well as monos [13].

6. Let in a topos a commutative diagram be given with
an epimorphism as indicated. If (1) + (2) and (1)
are pullbacks, then (2) is pullback, too, [1].

· //

��
(1)

· //

��
(2)

·

��
· // // · // ·

7. Pullback functors admit right-adjoints [13], consequently they preserve colimits.

8. All morphisms admit unique epi-monic-factorizations up to isomorphism [13]. If f : A→ C is
decomposed in this way, i.e. f = f m ◦ f e, we call f e(A) the image of f .

3 Managing Global Constraints

In the present section we analyse global constraints, that is, constraints that reside in neither of the com-
ponent metamodels alone, and thus involve elements from several metamodels. Correspondingly, we
use the name inter-metamodel constraints that accurately describes the case. In Sect.3.1, we will state
a definition of global satisfaction against an inter-metamodel constraint. The definition treats the binary
case only, but the generalization for the N-ary case is straightforward. Models typed over different meta-
models are said to be globally consistent if they satisfy all imposed inter-metamodel constraints. We will
argue that it is impractical to use this definition as an algorithm for global consistency checking. Hence,
in Sect.3.2, we introduce another algorithm, in which global satisfiability against an individual inter-
metamodel constraint is checked locally, and illustrate its advantages with a running example. Sect.3.3
compares the global satisfaction definition of Sect. 3.1 with the local algorithm of Sect.3.2. Finally, the
equivalence of all three methods is stated as our main theorem.

1 An angle in one corner of a commutative diagram indicates universality - e.g. pullback.

H. König, Z. Diskin 7

3.1 Global Consistency

Inter-metamodel constraints reside in different components of a multimetamodel (r1,r2), i.e. specify
global constraints. Consider e.g. a binary multimetamodel as in Fig.3. One may, for instance, specify
the following constraint declaration on classes2:

[acc]@δ : For each attribute with name n there has to be an accessor with name getN.

and ask whether several models typed over M1 and M2, resp., satisfy this constraint.
The declaration [acc]@δ spreads over different metamodels, thus a binding is possible only on the

pushout of r1 and r2. cf. Fig.3 in which morphisms r1 : M1→M1 +M0 M2 and r2 : M2→M1 +M0 M2 map
all elements of the metamodel components to the corresponding element in the pushout. Now we can
impose [acc] to the pushout object with the help of binding map δ . This is shown in Fig.4, where δ maps
according to the indicated shape.

S[acc]’s intended semantics is controlled by function VALIDATE[acc] (cf. Sect.2.1), which has input a
typed graph over S[acc] . It will return true if and only if for each x:0 for any reached element n : 3 along
link paths of the form e1:02,e2:23 there is a path e′1:01,e′2:13 starting at vertex x:0 and ending at vertex
getN : 3. Note that the super relation is not included in the image of δ , because getters shall exist for
own attributes only (inherited attributes already yield respective get-methods).

Attribute

Class

own

Str_Txt
name2

Assoc src

tgt super

Operation

Interface

owned

implmnts

class

owned

name1

M0

[acc]

0
01

[acc]

2

1

3

02

23

13

δ

[acc]

1 2

Figure 4: Imposing global constraint on merged multimodel

In Sect.2.2 we described two modeling teams. Assume the first team creates legal model (one or
more class diagrams) τ1 : A1→M1 ∈Mod(M1) and the other team creates legal model τ2 : A2→M2 ∈
Mod(M2). What about validity of [acc]@δ? Again, conjoint treatment of models requires their matching,
i.e. to decide on common concepts in the models. But model overlap might not be possible to be deduced
automatically: for example, an entity Online Order in A1 maybe called Online Purchase Order in A2.
In general, cross-(meta)model terminology may be very heterogeneous, and the structure of models
may vary significantly while still reflecting identical concepts. Therefore, modelers (users) must costly
determine (type-conformant) overlap A0 of A1 and A2 manually. Since the entire set of models can be of
significant size, manual can be considerable.

Formally – and similarly to metamodels – one must determine two graph morphisms

A1 A0
a1oo a2 // A2

2A standard requirement for Java Beans c©

8 The Story

and the overlap typing τ0 : A0 → M0, such that r1 ◦ τ0 = τ1 ◦ a1 as well as r2 ◦ τ0 = τ2 ◦ a2. Only now
is it possible to perform the component merge of the multimodel, which, basically, is carried out in the
same way as for metamodels: One constructs the pushout A1 +A0 A2, which – by the universal property
of pushouts – yields a unique typing mapping

τ1 +τ0 τ2 : A1 +A0 A2→M1 +M0 M2

We can thus say, that a (typed) complete multimodel3 (over multimetamodel (r1,r2)) is a span

τ1 τ0
(r1,a1)oo (r2,a2)// τ2

in the arrow category G→ with merge (pointwise pushout)

τ1
(r1,a1) // τ1 +τ0 τ2 τ2

(r2,a2)oo

In the light of the above considerations, this yields the following terminology [18, 7]:

Definition 1 (Global Consistency) Given an inter-metamodel constraint c@δ over multimetamodel (r1,r2).
We say that complete multimodel

τ1 τ0
(r1,a1)oo (r2,a2)// τ2

satisfies c@δ , if
τ1 +τ0 τ2 |= c@δ .

If the multimodel satisfies all inter-metamodel constraints imposed on (r1,r2), we call it globally consis-
tent.

We remark that the binary case can be generalized to the N-ary case (arbitrary diagrams) by constructing
colimits instead of pushouts.

Order

OfflOrder

1:super

2:super

OnlOrder

op2

2:class

2:owned

op1

1:class

1:owned

getPOS

2:name1

getCustmr

1:name1

1

Comparable
1:impl

Order

OfflOrder

1:super

2:super

OnlPO

0

a1

Order

OfflOrder

1:super

2:super

OnlPurchase

Order

3:Attribute

1:own
1:n
am
e2

shop assistant:

Association

Employee

1:t
gt

2:Attribute

1:Attribute

custmr

pOS

address

3:own

2:own
2:n
am
e2

3:n
am
e2

1:src

2

a2

Figure 5: Multimodel: Models with Overlap

Unfortunately, the approach of checking consistency along the lines of this definition, i.e constructing
globally typed data before checking, has major disadvantages:

3 In contrast to incomplete multimodels to be explained a little bit later.

H. König, Z. Diskin 9

1. One has to deal with the entire union of data (usually a huge structure) - independent of whether
there is only a small portion being affected by the constraint.

2. To specify overlaps of typed data structures, this enormous collection of data has to be traversed
manually or at least semi-automatically. Overlaps have to be complete, i.e. they are not specific to
the given constraint declaration.

Consider e.g. Fig.5: A1 contains owned operations and implemented interfaces of the order classes. A2
represents the same order classes. Shaded nodes and their : super-links are in the overlap A0, i.e. On-
lOrder and OnlPurchaseOrder are declared to be the same classes despite their different names. Besides
own attributes, A2 contains the shop assistant who processed the Offline Order (via a directed associa-
tion). The huge pushout is not shown due to lack of space.

If we want to check whether the multimodel satisfies constraint [acc]@δ , the above mentioned dis-
advantages manifest as follows:

1. Although [acc]@δ only ”talks” about classes and names of their attributes and operations, we have
to deal with interface implementations and operation’s reference to its class (from A1), as well as
(usually many) associations (from A2), but also with superclass relations (from the overlap).

2. The user must search the set of all classes and all their superclass relations for identical concepts.
In the example he must specify sameness of OnlOrder and OnlPurchaseOrder, the other two iden-
tities Order and OfflOrder may automatically be proposed based on identical naming, yet have to
be confirmed by the user. He or she also has to declare several superclass relations to be the same.

Both aspects become more severe, if there is a big number of class diagrams in both modeling teams,
probably stored with different techniques. Moreover, examples in this paper are small compared with real
class diagrams. Thus the proportion of matching (i.e. overlap specification) of non-relevant data (being
outside the fragment that matters for the constraint) will be significantly bigger than in our examples.

3.2 Individually Local Checking

Thus the question arises whether there is a more efficient technique for checking inter-metamodel con-
straints: In the example, a better approach would be to consider a priori only those pieces of data and
models and their overlaps that matter for checking.

We propose to pursue the objective of checking validity of constraints as local as possible. In the
binary case, a pair (τ1,τ2) ∈Mod(M1)×Mod(M2) is given. We call (τ1,τ2) an incomplete multimodel
over (r1,r2), because the two compoments are not yet interrelated (there is no τ0 and no arrows a1,a2
between domains of the models so far).

Algorithm for Local Checking Let incomplete multimodel (τ1,τ2) be given over multimetamodel
(r1,r2). An inter-metamodel constraint c@δ shall be verified as follows:

1. Identify those fragments of M1, M2, and M0, that matter for checking, by constructing pullbacks
of δ along the diagonal in the metamodel pushout, i.e. k1 := r∗1(δ), k2 := r∗2(δ), and k0 := (r1 ◦
r1)
∗(δ). Let Sc

1, Sc
2, and Sc

0 be the domains of these morphisms.

2. Construct pullbacks τc
i := k∗i (τi) for i∈ {1,2}. Call the domains (i.e. locally restricted models) Ac

1,
and Ac

2. This yields arrows k′i : Ac
i → Ai, i ∈ {1,2}.

Provide the user (modeler) with the images k′1(A
c
1) and k′2(A

c
2), resp, cf. Fact 8, Sect.2.3.

3. Determine compatibly typed overlap τ̂c
0 : Âc

0 → k0(Sc
0) of these two images such that one of the

corresondence maps â1 : Âc
0→ k′1(A

c
1) and â2 : Âc

0→ k′2(A
c
2) is a monomorphism.4

4 This is no serious restriction, as in almost many examples both correspondences are injective.

10 The Story

4. Compute pullback τc
0 : Ac

0→ Sc
0 of this overlap along the epi-part of k0 and apply validatec(τ

c
1 +τc

0

τc
2).

In the sequel, we will show that all these constructions neatly fit together, i.e.

a) The precise calculation of k′i(A
c
i) in Step 2 has to be clarified.

b) A complete overlap τ0 : A0→M0 can automatically be determined and thus be compared with the
global approach.

c) There are unique arrows ui : Ac
0 → Ac

i , i ∈ {1,2}, such that τc
1 +τc

0
τc

2 can automatically be deter-
mined.

d) τc
1 +τc

0
τc

2 is typed over Sc, hence VALIDATEc can be applied.

We first illustrate application of the algorithm for our running example. Fig.6 shows the situation from

Order

OfflOrder

OnlOrder

op2

2:owned

op1
1:owned

getPOS

2:name
getCustmr

1:name

Order

OfflOrder

0

c

0

ClassOperation

String

name

owned Class

Str_Txt

1

c

1

1

c

1
0

c

Order

OfflOrder

3:Attribute

1:own
1:name

Employee

2:Attribute

1:Attributecustmr

pOS

address

3:own

2:own

2:name

3:name

Class

AttributeText
name

owned

2

c

2

2

c

2

Figure 6: Individually Local Consistency Checking: Steps 1 to 3

the modeler’s perspective.

Step 1 : The images of δ (more precise of δ ’s restrictions k1,k0,k2) of Sc
1,S

c
2, and Sc

0 are depicted in the
lower half. Once the complete overlap M0 is known, they are automatically derived from the scope of the
constraint. Shaded vertices again depict overlap. The important improvement is that Interfaces together
with their operations and interface implementations now vanish. In the same way, class membership of
operations can be omitted. Since the constraint declaration does not involve superclass relations, they
can be omitted, too. Moreover, we must not care about associations and their source and targets.

Step 2 : The upper half shows images of appropriately narrowed A1 and A2. Again, this step can be
carried out automatically. Note that OnlPurchaseOrder is omitted since it does not possess own attributes
and hence automatically satisfies constraint declaration [acc]@δ .

Step 3 : The only manual activity is overlap specification. This is shown in the top middle of the figure.
It is now reduced to the selection of classes Order and OfflOrder. We do not have to deal with superclass
relations and classes without attributes in the overlap. Model structures simplify accordingly. Moreover,
declaration of OnlOrder-OnlPurchaseOrder-identity is no longer necessary.

H. König, Z. Diskin 11

Step 4 : The pullback of τ̂c
0 along the epi-part of k0 yields the appropriately retyped elements (classes

are retyped to type 0 in the arity shape). Pushout calculation is again an automatic procedure. In Fig.7
we depict again the user’s view, i.e. images under δ in order to make the localization clear. The resulting
model now contains no superfluous elements. It is reduced to four involved classes only: OnlOrder still
appears (but now only as automatic leftover from A1). The other three classes can easily be traversed. One
detects satisfaction for classes Order and OfflOrder (green coloured rectangles). However, the constraint
is violated for class Employee (red rectangle with “?”).

Attribute

Class

own

Str_Txt
name2

Operation

name1

c

[acc]

1:Attribute

Order

1:own

getCstmr

1:name2

op1

1:name1

cstmr

2:Attribute

OfflOrder

2:own

getPOS

2:name2

op2

2:name1

pOS
2:Attribute

Employee

3:own

3:name2address

1:owned

2:ownedOnlOrder

owned

c c
c

Figure 7: Local consistency checking: Step 4

The reader may compare the unstructured contents of Fig.5 with the reduced data in the upper half
of Fig.6. The presented technique obviously reduces workload and manual acitivities significantly. It
remains to ensure that the algorithm always yields the same result than the global definition (cf. Sect.3.1).
The challenge is to compare a single invocation of function CHECK on the huge structure τ1 +τ0 τ2 with
two simultaneous partial invocations.

3.3 Global-Local-Equivalence

Theorem 2 (Local Inter-Metamodel Checking is Correct) Let (τ1,τ2) be an incomplete multimodel
over multimetamodel (r1,r2), in which r1 or r2 is injective. Let c@δ be an inter-metamodel constraint
over (r1,r2). Then from the algorithm in Sect.3.2 a complete multimodel

τ1 τ0
(a1,r1)oo (a2,r2)// τ2

can universally be derived which satisfies c@δ according to Def. 1, if and only if the algorithm returns
true.

Before we give the precise proof, we provide the reader with an idea, how to organize it: both, the above
definition and the invented algorithm contain a merging step: one for the entire metamodel and one for
only those parts that matter for the constraint. In the proof of our theorem we compare both approaches
by - virtually - carrying them out simultaneously: we will use the fact that these simultaneous merges
can be controlled with the so-called Van Kampen Property, whenever one of the two graph mappings
r1 and r2 is injective5. This exactness property for well-behaved interaction of pullbacks and pushout is
formally defined as follows:

5 All examples in the present paper are such that both r1 and r2 are injective.

12 The Story

Definition 3 (Van Kampen Square) A pushout as indicated in the left part of Fig. 8 is called Van Kam-
pen Square, if in every commutative cube with this pushout in the bottom and with back and left faces
pullbacks (see the right part of Fig. 8), the following equivalence holds:

The top face is a pushout if and only if the front and right faces are pullbacks.

Y0

��

~~

// Y2

��

yy
X0

r2 //

r1

��

X2

r2

��

Y1

��

// Y3

��

X0
r2 //

r1

~~

X2

r2zz
X1

r1 // X1 +X0 X2 X1 r1

// X1 +X0 X2

Figure 8: Definition of the Van Kampen Property

We note that the ”if”-part in this definition is always fulfilled in G, see Sect. 2.3, fact 7. ut

3.4 Proof of the Theorem

Additional statements ”(a)” to ”(d)” will show the points at which the corresponding aspects given after
the algorithm in Sect. 3.2 are clarified. The pushout

M0
r2 //

r1
��

M2

r2
��

M1
r1 // M1 +M0 M2

(1)

is the starting point. The constraint c@δ is recognized in the pushout by a graph morphism δ : Sc →
M1 +M0 M2. Step 1 of the algorithm proposes to construct pullbacks of δ along the diagonal. This yields
ki : Sc

i →Mi, i ∈ {0,1,2}, and the commutative cube in Fig.9

Sc
0

k0

��

r′1

~~

r′2 // Sc
2

k2

��

l2yy
Sc

1

k1

��

l1 // Sc

δ

��

M0
r2 //

r1

}}

M2

r2yy
M1 r1

// M1 +M0 M2

Figure 9: Formula decomposition per metamodel

H. König, Z. Diskin 13

The first (although obvious) application of Def. 3 is that in the cube in Fig.9 the top face is a pushout,
because all 4 side faces are pullbacks. Intuitively this means that Sc is the union of the projected parts of
the sketched area to M1, M2, resp.

Steps 2 and 3 deal with epi-monic-factorisations. In this case

Sc
i ke

i

// //

ki

((
ki(Sc

i)
//
km

i

// Mi

i ∈ {0,1,2}, see Fact 8. By decomposing pullbacks of τi along ki = km
i ◦ ke

i in Step 2 for i ∈ {1,2} we
obtain epi-monic-factorization of k′i as well, since pullbacks preserve monos as well as epis, cf. Fact 5
(a). Now we define A0 := Âc

0 and τ0 := km
0 ◦ τ̂c

0 : A0→M0 (b). Thus

A0

τ0
��

Âc
0

τ̂c
0
��

M0 k0(Sc
0)

oo
km

0

oo

is cartesian. In Step 4 τc
0 = (ke

0)
∗(τ̂c

0), thus

τ
c
0
∼= k∗0(τ0)

We can assume that in Step 4 the calculation was carried out such that equality holds in this relation.
Thus we obtain cartesian squares not only for i ∈ {1,2} (by Step 2), but also for i = 0:

Ai

τi
��

Ac
i

τc
i��

k′ioo

Mi Mc
i

kioo

(2)

Let
ai := (k′i)

m ◦ âi, i ∈ {1,2}. (3)

where (k′i)
m are the monic parts of k′i, resp. Via the involved epi-mono-factorisations one computes

τi ◦ai = ri ◦ τ0, i ∈ {1,2}.

completing the multimodel. Thus τ1 ◦a1 ◦ k′0 = r1 ◦ τ0 ◦ k′0 = r1 ◦ k0 ◦ τc
0 = k1 ◦ r′1 ◦ τc

0 (cf. (2) and Fig.9)
there is a unique arrow u1 : Ac

0→ Ac
1 (c) yielding

1. τc
1 ◦u1 = r′1 ◦ τc

0

2. k′1 ◦u1 = a1 ◦ k′0
In the same way a mediating arrow u2 : Ac

0 → Ac
2 is obtained, which together with u1 yields the local

correspondence span

τc
1 τc

0
(u1,r′1)oo (u2,r′2)// τc

2 . (4)

By a previous remark Sc is the ”union” of the projected parts, hence the codomain of the pushout (in G→)
of this span can be taken to be Sc (d). Let’s abbreviate this pushout τc := τc

1 +τc
0
τc

2 : Ac
1+Ac

0
Ac

2 =: Ac→ Sc.

14 The Story

We now construct a cartesian square of the form

Ac

!
��

τc
// Sc

δ
��

A1 +A0 A2
τ1+τ0 τ2

// M1 +M0 M2

(5)

The proof will then be complete, since this gives check(τ1 +τ0 τ2,c@δ) = validatec(τ
c), i.e. τ1 +τ0 τ2 |=

c@δ if and only if the local check returns true, as required.
For this, we first observe that the equations 1. and 2. make

τ0

(a1,r1)
��

τc
0

(k′0,k0)oo

(u1,r′1)��
τ1 τc

1
(k′1,k1)oo

(6)

a commutative diagram in G→. The arrows k1,r1,k0,r′1 between codomains of the four G→-objects in
the corners of this square constitute the left face pullback of Fig.9 such that, by pullback composition
and decomposition

A0

a1
��

Ac
0

k′0oo

u1
��

A1 Ac
1

k′1oo

is cartesian. Replacing index 1 by 2 in this argumentation shows that

A0

a2
��

Ac
0

k′0oo

u2
��

A2 Ac
2

k′2oo

is cartesian, as well. Hence in

Ac
0

k′0
��

u1

��

u2 // Ac
2

k′2

��

u2zz
Ac

1

k′1

��

u1

// Ac

kc

��

A0
a2 //

a1

~~

A2

a2zz
A1 a1

// A1 +A0 A2

(7)

the back faces are pullbacks. Since Ac was constructed as pushout, we obtain a mediator kc : Ac →
A1 +A0 A2 (dashed arrow in (7)).

H. König, Z. Diskin 15

Since one of âi is monic (Step 3), a1 or a2 is monic, as well, cf. (3). Thus the involved pushout
square

A0
a2 //

a1
��

A2

a2
��

A1 a1

// A1 +A0 A2

has the Van Kampen property such that Definition 3 ensures that both front faces in (7) are pullbacks. In
the commutative ”cube”

τc
i

(k′i,ki)
��

(ui,li) // τc

(kc,δ)
��

τi
(ai,ri)
// τ1 +τ0 τ2

(8)

this observation shows that the left part of

Ac
i

k′i ��

ui // Ac

kc
��

τc
// Sc

δ
��

Ai
ai// A1 +A0 A2

τ1+τ0 τ2// M1 +M0 M2

is cartesian and that the complete rectangle is a pullback, too, for i∈{1,2} (again pullback (de-)composition).
By fact 5 and Lemma 4 (stated below) the same situation occurs in

Ac
1 +Ac

2

k′1+k′2 ��

[u1,u2] // Ac

kc
��

τc
// Sc

δ
��

A1 +A2
[a1,a2]// // A1 +A0 A2

τ1+τ0 τ2// M1 +M0 M2

The most important fact, however, is that [a1,a2] is epic because it is the cocone of a pushout, s.th. Fact
6 yields the desired result. ut

Lemma 4 Let in a category with coproducts

A

i ##
f

))A+A′ B
g // C

A′

i′
;;

f ′

55

be given where i, i′ are coproduct injections. Then

g◦ [f , f ′] = [g◦ f ,g◦ f ′].

Proof: u := [g◦ f ,g◦ f ′] is unique with the property u◦ i = g◦ f and u◦ i′ = g◦ f ′. But g◦ [f , f ′] fulfills
this property, too. ut

16 The Story

4 Future Work

We presented a new approach for individually local checking of constraints imposed on heterogeneous
multimodels, which significantly reduces workload and error-prone manual interaction. Our second
contribution is a formal underpinning of global consistency, which essentially employs the diagrammatic
nature of constraint; in this framework, we were able to prove the global-local-equivalence formally.

The most important direction for future research is to generalize the proposed algorithm together
with the necessary correctness theorem for the general N-ary case with complex overlapping considered
in [7]. This encompasses non-monic legs in relation spans. Moreover, view definitions (on metamodels)
and view execution (on models)[5] should be taken into consideration. The challenge will be to find ap-
propriate generalization and extensions of the mathematical machinery, which, at least to our knowledge,
have not yet been provided.

Another direction of future reasearch is to extend the scope of underlying grafical structures: Up
to now, our approach is formally underpinned by simple directed graphs, but more general structures
have also been considered, e.g. attributed graphs [8]. Obviously this also requires a generalization of the
underlying diagrammatic framework.

Last but not least, we plan to evaluate the algorithm in the tooling framework developed at Bergen
University College [15, 17]. Our idea is to enhance the DPF editors to make them inter-metamodel
aware. Alternatively, we can try to integrate our approach into other constraint checking tools, e.g. USE,
a tool to specify additional integrity constraints on models which has the ability to check system state
snapshots against OCL constraints [12].

References

[1] A. Carboni, G. Janelidze, G.M. Kelly & R. Paré (1997): Localization and stabilization for factorization
systems. Applied Categorical Structures 5(1), pp. 1–58.

[2] Z. Diskin (2011): Towards generic formal semantics for consistency of heterogeneous multimodels. Technical
Report GSDLAB 2011-02-01, University of Waterloo.

[3] Z. Diskin & U. Wolter (2008): A Diagrammatic Logic for Object-Oriented Visual Modeling. Electr. Notes
Theor. Comput. Sci. 203(6), pp. 19–41, doi:10.1016/j.entcs.2008.10.041.

[4] Zinovy Diskin, Boris Kadish, Frank Piessens & Michael Johnson (2000): Universal Arrow Foundations for
Visual Modeling. In Michael Anderson, Peter Cheng & Volker Haarslev, editors: Diagrams, Lecture Notes
in Computer Science 1889, Springer, pp. 345–360. Available at http://link.springer.de/link/
service/series/0558/bibs/1889/18890345.htm.

[5] Zinovy Diskin, Tom Maibaum & Krzysztof Czarnecki (2012): Intermodeling, queries, and kleisli categories.
In: Fundamental Approaches to Software Engineering, Springer, pp. 163–177.

[6] Zinovy Diskin & Uwe Wolter (2007): A Diagrammatic Logic for Object-Oriented Visual Modeling. In: Pro-
ceedings of the Second Workshop on Applied and Computational Category Theory (ACCAT 2007), ENTCS,
pp. 19–41, doi:doi:10.1016/j.entcs.2008.10.041.

[7] Zinovy Diskin, Yingfei Xiong & Krzysztof Czarnecki (2011): Specifying Overlaps of Heterogeneous Models
for Global Consistency Checking. In Juergen Dingel & Arnor Solberg, editors: Models in Software Engineer-
ing, Lecture Notes in Computer Science 6627, Springer Berlin Heidelberg, pp. 165–179, doi:10.1007/978-3-
642-21210-9 16. Available at http://dx.doi.org/10.1007/978-3-642-21210-9_16.

[8] H. Ehrig, K. Ehrig, U. Prange & G. Taentzer (2006): Fundamentals of Algebraic Graph Transformations.
Springer.

http://dx.doi.org/10.1016/j.entcs.2008.10.041
http://link.springer.de/link/service/series/0558/bibs/1889/18890345.htm
http://link.springer.de/link/service/series/0558/bibs/1889/18890345.htm
http://dx.doi.org/doi:10.1016/j.entcs.2008.10.041
http://dx.doi.org/10.1007/978-3-642-21210-9 16
http://dx.doi.org/10.1007/978-3-642-21210-9 16
http://dx.doi.org/10.1007/978-3-642-21210-9_16

H. König, Z. Diskin 17

[9] S. Fickas, M. Feather & J. Kramer (1997): Workshop on Living with Inconsistency. Proceedings of ICSE-97,
Boston, USA.

[10] Martin Fowler (1997): Analysis Patterns: Reusable Object Models. Addison-Wesley.
[11] Peter Freyd (1972): Aspects of Topoi. Bull. Austral. Math. Soc. 7, pp. 1–76,

doi:10.1017/S0004972700044828.
[12] Martin Gogolla, Fabian Büttner & Mark Richters (2007): USE: A UML-based specification environment

for validating UML and OCL. Sci. Comput. Program. 69(1-3), pp. 27–34, doi:10.1016/j.scico.2007.01.013.
Available at http://dx.doi.org/10.1016/j.scico.2007.01.013.

[13] Robert Goldblatt (1984): Topoi: The Categorial Analysis of Logic. Dover Publications.
[14] S. Lack & P. Sobociński (2006): Toposes are Adhesive. Lecture Notes in Comput. Sci. 4178, pp. 184–198,

doi:10.1007/11841883 14.
[15] Yngve Lamo, Xiaoliang Wang, Florian Mantz, Øyvind Bech, Anders Sandven & Adrian Rutle (2013): DPF

Workbench: A multi-level language workbench for MDE. Proc. of the Estonian Acad. of Sciences 62, pp.
3–15, doi:10.3176/proc.2013.1.02.

[16] Adrian Rutle, Alessandro Rossini, Yngve Lamo & Uwe Wolter (2009): A Diagrammatic Formalisation
of MOF-Based Modelling Languages. In Manuel Oriol & Bertrand Meyer, editors: TOOLS EUROPE,
Lecture Notes in Business Information Processing 33, Springer, pp. 37–56, doi:10.1007/978-3-642-02571-
6 4. Available at http://dx.doi.org/10.1007/978-3-642-02571-6_4.

[17] Adrian Rutle, Uwe Wolter & Yngve Lamo (2008): A Diagrammatic Approach to Model Transformations. In:
Proceedings of the 2008 Euro American Conference on Telematics and Information Systems (EATIS 2008),
ACM, pp. 1–8, doi:10.1145/1621087.1621105.

[18] Mehrdad Sabetzadeh, Shiva Nejati, Sotirios Liaskos, Steve M. Easterbrook & Marsha Chechik (2007): Con-
sistency Checking of Conceptual Models via Model Merging. In: RE, IEEE, pp. 221–230. Available at
http://dx.doi.org/10.1109/RE.2007.18.

[19] U. Wolter & H. König (2015): Fibred Amalgamation, Descent Data, and Van Kampen Squares in Topoi.
Applied Categorical Structures 23(3), pp. 447 – 486, doi:10.1007/s10485-013-9339-2.

http://dx.doi.org/10.1017/S0004972700044828
http://dx.doi.org/10.1016/j.scico.2007.01.013
http://dx.doi.org/10.1016/j.scico.2007.01.013
http://dx.doi.org/10.1007/11841883_14
http://dx.doi.org/10.3176/proc.2013.1.02
http://dx.doi.org/10.1007/978-3-642-02571-6_4
http://dx.doi.org/10.1007/978-3-642-02571-6_4
http://dx.doi.org/10.1007/978-3-642-02571-6_4
http://dx.doi.org/10.1145/1621087.1621105
http://dx.doi.org/10.1109/RE.2007.18
http://dx.doi.org/10.1007/s10485-013-9339-2

ISSN 1863-7043

		2016-03-07T10:43:22+0100
	fhdwcsh

