
Van Kampen Colimits in Presheaf Topoi

Harald König, Uwe Wolter

Bericht Nr.: 02016/02

Impressum

Forschungsberichte der FHDW Hannover – Veröffentlichungen aus dem Bereich Forschung und
Entwicklung der FHDW Hannover.

Herausgeber: Die Professoren der FHDW Hannover
Fachhochschule für die Wirtschaft Hannover
Freundallee 15
30173 Hannover

Kontakt: techrep@fhdw.de

ISSN 1863-7043

Submitted to:
Forschungsberichte der FHDW Hannover

Van Kampen Colimits in Presheaf Topoi

Harald König
University of Applied Sciences FHDW Hannover, Germany

harald.koenig@fhdw.de
Uwe Wolter

University of Bergen, Norway
Uwe.Wolter@uib.no

Fibred semantics is the foundation of the typed-instance pattern of software engineering. Multimod-
eling requires to construct colimits, decomposition is given by pullback. Compositionality requires
an exact interplay of these operations, i.e. diagrams must enjoy the Van Kampen property. However,
algorithmic validity checking of this property based on its definition is nearly impossible.

In this paper we state a necessary and sufficient yet easily checkable condition for the Van Kam-
pen property in presheaf topoi. An algorithm for colimit computation can easily be enhanced, such
that it simultaneously carries out this verification. Moreover, practical guidelines describe further
simplification under some additional but reasonable assumptions.

1 Introduction

Van Kampen Colimits are a straightforward generalization of Van Kampen squares [27]. In [30] we gave
a necessary and sufficient condition for a pushout to be a Van Kampen square in a presheaf topos. In the
present paper a corresponding criterion is given for all colimiting cocones.

1.1 Van Kampen Property and Presheaf Topoi

Software engineering and especially model-driven software development requires the decomposition of
large models into smaller components, i.e. successful development of large applications always requires
system design fragmentation. Vice versa, a comprehensive viewpoint of a related ensemble of heteroge-
nous software-engineering components is taken up by considering the union of these artefacts modulo
their relations among themselves. This assembly shall not only be carried out on a syntactical level
(models), but in the same way on the semantical level (instances). This interplay between assembly and
disassembly shows that composition and correct decomposition of an instance of a model into instances
of the model components always accompany each other. This latter claim is called compositionality in
the literature [6, 7, 25]. It can be shown that it is not always possible to guarantee compositionality [25].

Fibred semantics adheres to the typed-instance pattern, a standard viewpoint in software engineering.
I.e. semantics of a model is given by a set (or a category) of mappings (or morphisms) into the model
– the typing assignment. Formally (categorically) union is colimit (of the arrangement of components)
and decomposition in the fibred setting is taking pullbacks along the cocone morphisms of the colimit.

To wit: Compositionality means that colimit of semantics (instances) is controlled by colimit of
syntax (models) such that pullback of the instance colimit retrieves the original instances. Thus compo-
sitionality is equivalent to the Van Kampen property [12], an abstract characteristic which determines an
exactness level for the interaction of colimits and pullbacks. It is thus often necessary to check validity of
this property, which – using its original definition – is nearly impossible to be performed algorithmically.

2 Van Kampen Colimits

Artefacts like UML-models [9] and ER-models in databases are based on directed multi-graphs
which in turn can be coded as a functor category SetB where B has two objects E (edges) and V (vertices)
and two arrows s,t ∶ E →V . More general models, however, use more sophisticated metamodels B, such
as E-graphs for attributed graphs [5], bipartite graphs for petri-nets [5], or more complex meta-models B
for generalized sketches [4].

Constructing colimits in a category C is an operation on diagrams, which are usually coded as func-
tors from a small schema category I to C. In order to make our results usable for Software Engineering,
we use the older definition for diagrams: Instead of a small category, the schema I is a finite multi-graph
and a diagram is a graph morphism from I to C [20, 1]1. The practical construction of colimits relies on
mapping paths, i.e. chains of pairs of elements that are mapped to each other by the morphisms in the
diagram, cf. Def.5 in Sect.3. It can easily be carried out algorithmically for finite artifacts.

Summary: While colimit construction is easy, compositionality check (validation of the Van Kam-
pen property) is hard. The main contribution of the present paper is a theorem (Theorem 8 in Sect.3),
which states that a colimit has the Van Kampen property if and only if there are no ambiguous mapping
paths between any pair of elements of the disjoint union (coproduct) of all artefacts under considera-
tion. Thus the implementation of the colimit operation already provides the data material for efficient
compositionality checking.

In order to prove this theorem we make use of a former result, in which a necessary and sufficient
criterion is given for pushouts [30]. This older result is stated in Sect. 4.1, transfered to coequalizers
in 4.2 and, finally, lifted to arbitrary colimits in Sect. 4.3. In order to make Theorem 8 even better
available for algorithms, the ambiguity is extended from disjoint paths to arbitrary paths using a certain
path reduction technique (see Sect. 5). Thus an algorithm can avoid the checking of path disjointness,
hence again be accelarated by a quadratic magnitude w.r.t. to the number of paths.

This technical report also makes a note of some more practical considerations in Sect.6: Colimit
construction can be simplified for special diagrams by computing mapping path relations and their cor-
responding quotient only partially on the entire diagram. Furthermore, in this case, the check for the Van
Kampen property can also significantly be eased. For special but still sufficiently general circumstances,
we obtain an efficient algorithm for colimit computation (useful for all multimodel scenarios, cf.[24])
with simultaneous verification of the Van Kampen property, which comes almost for free (without fur-
ther effort) during algorithm execution.

1.2 Related Work

The Van Kampen property has its origin in algebraic topology: Topological spaces X can be investigated
by a covering family of X which are related by their inclusions. A description of the main topological
properties is carried out with the help of the fundamental groupoid. The Van Kampen Theorem [22]
states that the colimit of the fundamental groupoids of all covering spaces is the fundamental groupoid
of X , thus inferring global properties from local ones. The original idea was stated bei H. Seifert [26] for
pushouts and further elaborated by Van Kampen [14].

Inferring global properties from local ones is the heart of sheaf theory [19]. The fibred view on
sheaves are stacks [28]. The application of Van Kampen’s ideas to graphical modeling and to Software
Engineering was invented in [27, 16] and then further detailed in [5] for the use in Graph Transformations.
That a reasonable playground for these theories are extensive categories and especially topoi is shown in
[2, 3, 17].

1 More precisely to the underlying graph of C, see Sect.2

Harald König, Uwe Wolter 3

Amalgamation is a requirement for a collection of artefacts in computer science [7, 6] which has been
connected to the Van Kampen property in [30]. The same property is called exactness in institution theory
[25]. The importance of finding a feasible condition to check the Van Kampen property was caused
by investigations of new methods in graph transformations [18, 15] and diagrammatic specifications
[29]. The condition given in [30] for pushouts in presheaf topoi can be used in algorithms. That the
Van Kampen property can be characterized as a colimit in a comprising category of spans [12] is a
more fundamental statement which can hardly be applied in practice. The Van Kampen property has
also been investigated in slightly more special contexts [13] and can be desribed as bilimit in CAT
(https://ncatlab.org/nlab/show/van+Kampen+colimit).

2 Preliminaries

This chapter recapitulates the most important notation for the following elaboration. Moreover, we list
some known facts that will be used throughout the paper.

For any category C, X ∈ C means that X is contained in the collection of objects in C. A diagram
in C is based on a directed multigraph I, the schema for the diagram. In this paper I is always finite.
We write I0 and I1 for the sets of vertices and edges of I. Formally, a diagram D ∶ I→U(C) is a graph
morphism where U denotes the ”forgetful” functor assigning to each category its underlying graph2.
For convenience reasons, however, the forgetful functor will be omitted, i.e. diagrams will be denoted
D ∶ I→ C. This definition is used instead of the one where I is a schema category rather than a graph,
because it will turn out, that the results in this paper can easier be stated. The notions of (co-)cones and
(co-)limits is the same modulo the adjunction F ⊣ U where F ∶ Graphs→Cat assigns to any graph its
freely generated category, see [20], III, 4 for more details. Another advantage of this definition occurs
in applications, e.g. in Software Engineering: Although the schema graph is finite, the category freely
generated from it may have infinitely many arrows.

Vertices of I play the role of indices for diagram objects, hence, we use letters i, j, . . . for vertices.

Edges of I will be depicted i d // j and we write i = s(d), j = t(d) (source and target of d). Images

of edges under a diagram D ∶ I→C will be denoted Di
Dd // D j , i.e. slightly deviating from the usual

notation D(i),D(d), etc.
Let E,D ∶ I→C be two diagrams, then a family

τ = (τi ∶ Ei→Di)i∈I0

of C-morphisms with τ j ○Ed =Dd ○τi for all edges i d // j in I1 will be called a natural transformation
between the diagrams and will be denoted in the usual way τ ∶ E⇒D. For any S ∈C, ∆S ∶ I→C denotes
the constant diagram, which sends each vertex of I to S and each edge of I to idS. S (as C-object) and ∆S
(as diagram) will be used synonymously. Diagrams together with natural transformations constitute the
category CI. Note that ∆ ∶C→CI is itself a functor, assigning to each object of C its constant diagram
and to an arrow f ∶ A→ B the ”constant” collection (f)i∈I0 .

We assume all categories under consideration to have colimits. The coproduct cocone of a family
(Di)i∈I0 of C-objects will be denoted

(Di
⊆i // ∐i∈I0

Di)i∈I0 .

2I.e. it forgets identies and composition.

4 Van Kampen Colimits

The morphisms ⊆i are called coproduct injections.
We assume all categories under consideration to have pullbacks. In the sequel, we will work with

chosen pullbacks, i.e. for each pair of C-arrows B
h→ A

k← X with common codomain, a choice

Y h′ //

h∗(k)
��

X

k
��

B
h
// A

of pullback span (h∗(k),h′) is determined once and for all. For all h ∶ B→ A, h∗(idA) shall be chosen to
be idB. Whenever we deviate from this choice, this will be emphasized. It is well-known [11] that for
fixed h ∶B→A chosen pullbacks along h give rise to the pullback functor h∗ ∶C↓A→C↓B between comma

categories. Pullbacks can be composed, i.e. if C
h2→B

h1→A, then h∗2 ○h∗1 yields a pullback along h1 ○h2, and
decomposed, i.e. if h∗1(k) and (h1 ○h2)∗(k) are computed, the resulting universal arrow from the latter
into the former pullback yields a pullback of h2 and h∗1(k). Note, that in both cases the automatically
appearing pullbacks need not be chosen. Another fact, which we will use throughout the paper, is that
pullbacks exist in CI and can be computed indexwise, i.e. by constructing for all i ∈ I0 the pullbacks of
the i-th component of the involved natural transformations [11].

The underlying category for all further considerations is a category of presheaves, i.e. the category
G ∶= SetB (with B a small (base) category, Set the category of sets and mappings) of functors from B to
Set together with natural transformations between them. We will also use the term ”sort” for the objects
in B and the term ”operation (symbol)” for the morphisms in B. It can be shown that G has all finite
colimits and all pullbacks, which are computed sortwise, resp. G is a topos and will thus also be called

a presheaf topos [11]. E.g. the category of multigraphs is a presheaf topos with B = E t
//

s //
V (plus

identities on E and V). The simplest presheaf topos is Set = Set1 with the one-object category 1.
In this paper, we will make frequent use of (sortwise) coproducts, i.e. disjoint unions of sets. In order

to make argumentations simpler in proofs and background discussions, we will assume that for each
X ∈ B the artefacts (Di(X))i∈I0 are a priori disjoint sets, i.e. the coproduct can be obtained by simple
union. The main results (e.g. Theorem 8), however, do not make this assumption and are formulated
without mentioning coproducts. This enables more direct application of our results in practice, e.g. in
software engineering.

An important property of topoi (and hence presheaves) is extensivity, i.e. the coproduct functor

∐∶∏
i∈I

G↓Di→G↓∐
i∈I

Di

assigning to each object (fi ∶ Ai→Di)i∈I in ∏i∈I G↓Di the object ∐i∈I fi ∶ ∐i∈I Ai→∐i∈I Di in G↓∐i∈I Di,
is an equivalence of categories for each finite index set I and each I-indexed family (Di)i∈I of objects in
G. Its inverse arises from constructing pullbacks along coproduct injections.

Furthermore, we need the following facts for topoi (I is a finite index set).

Fact 1 [10] Let

Ai
ai //

fi

��

A

g
��

∐i∈I Ai
[a1,...,an] //

∐i∈I fi

��

A

g
��

Mi
gi // M ∐i∈I Mi

[g1,...,gn] // M

Harald König, Uwe Wolter 5

be commutative diagrams. The squares on the left-hand side are pullbacks for all i ∈ I, if and only if the
square on the right-hand side is a pullback. ⊓⊔
The notation [] and ∐i∈I for morphisms refers to universal mappings out of / between coproducts.
Fact 2 If the squares on the left-hand side of

Ai
ai //

fi

��

Bi

gi

��

∐i∈I Ai
∐i∈I ai //

∐i∈I fi

��

∐i∈I Bi

∐i∈I gi

��
Ci

bi // Di ∐i∈I Ci
∐i∈I bi // ∐i∈I Di

are pullbacks for all i ∈ I, then so is the right-hand side.
The latter fact follows from extensivity: As an equivalence the functor∐ preserves products. Products in
∏i∈I G↓Di are given by indexwise products. Products in slice categories, however, are given by pullbacks,
i.e., the diagonal gi ○ai = bi ○ fi is the product of bi and gi in G↓Di with projections fi and ai, respectively.
The right diagram represents the image of the product (bi ×gi)i∈I in ∏i∈I G↓Di w.r.t. ∐. It becomes, in
such a way, a product in G↓(∐i∈I Di) and thus a pullback in G. ⊓⊔

3 An Equivalent Condition for the Van Kampen Property

In this chapter we introduce the Van Kampen property and state the main result of this paper, a necessary
and sufficient yet easily testable condition for the Van Kampen property to hold in presheaf topoi.

3.1 Van Kampen Colimits

A commutative cocone out of a diagram D ∶ I→ G is given by a (cocone) object S ∈ G and a natural
transformation

κ ∶D⇒ ∆S. (1)

Pulling back a G-arrow K σ // S along all morphisms of κ yields

Ei
Ed //

κ
′
i

%%

κ
∗
i (σ)

��

E j

κ
∗
j (σ)
��

κ
′
j // K

σ

��
Di

Dd //

κi

99D j
κ j // S

(2)

where the right and the outer rectangles are chosen pullbacks, Ed is the unique completion into the right
pullback, and the resulting left square is a pullback by the pullback decomposition property. The left
square may, however, not be a chosen one, but it results in diagram E as well as the natural transformation
κ
∗(σ) ∶= (κ

∗
i (σ))i∈I0 ∶ E⇒D. Since pullbacks of GI are computed sortwise, this can be depicted as a

GI-pullback square

E
κ
′
+3

κ
∗(σ)

��

∆K

∆σ

��
D

κ
+3 ∆S

6 Van Kampen Colimits

The fact that the resulting naturality squares of κ
∗(σ) in (2) are pullbacks gives rise to the following

definition:

Definition 3 (Cartesian Transformation) A natural transformation τ ∶E⇒D ∶ I→G is called cartesian
if all naturality squares are pullbacks.

For a fixed diagram D ∶ I→G let GI ⇓D be the full subcategory of GI ↓D of cartesian natural trans-
formations. Thus κ

∗ maps objects of G↓S to objects in GI ⇓D. Moreover, any arrow γ ∶ σ → σ
′ of

G↓S yields a family of arrows (κ
∗
i (γ)) (universal arrows into pullbacks) of which it can easily be shown

that together they yield a natural transformation κ
∗(γ) ∶ κ∗(σ) → κ

∗(σ
′). It is cartesian due to pullback

decomposition and κ
∗ becomes a functor

κ
∗ ∶G↓S→GI ⇓D (3)

by the mentioned universality properties.
As usual, a colimit (or colimiting cocone) is a universal cocone κ ∶D⇒ ∆S, i.e. for each T ∈G and

cocone ρ ∶D⇒ ∆T , there is a unique G-morphism S u // T such that ∆u○κ = ρ , i.e., u○κi = ρi for all
i ∈ I0. The following definition has been given in [12].

Definition 4 (Van Kampen Cocone) Let D ∶ I→ G be a diagram and κ ∶ D⇒ ∆S be a commutative
cocone. Then κ has the Van Kampen (VK) Property if functor κ

∗ is an equivalence of categories.

It is important to note that the functor κ
∗ has a left-adjoint κ∗ ∶ GI ⇓ D → G↓S which assigns to a

cartesian natural transformation τ ∶E⇒D the unique arrow to S out of the colimit object of the colimiting
cocone of E [27]. I.e. κ∗ is the (pseudo-)inverse of κ

∗, if the VK property holds. Thus the VK property
means that unit and counit of adjunction are isomorphisms. Note also that each VK cocone D⇒ ∆S is
automatically a colimit (apply κ

∗ to id∆S and use the definition of κ∗). Because of this, we will use the
terms ”Van Kampen cocone” and ”Van Kampen colimit” synonymously.

This also shows that the counit is always an isomorphism, if pullback functors have right-adjoints
(and thus preserve colimits), which is true in every (presheaf) topos.

The situation is more involved concerning the unit of adjunction: The easiest example of the VK
property arises for the empty diagram. In this case the property translates to the fact, that the initial
object 0 is strict, i.e. each arrow A // 0 is an isomorphism. This is true in all topoi [11]. In the
same way, since all topoi are extensive (cf. Sect.2), coproducts have the Van Kampen property in G. But
the unit fails to be an isomorphism for pushouts and coequalizers: Even in Set there are easy examples
of pushouts which violate the VK property [27]. In adhesive categories (and thus in all topoi [17])
pushouts are VK, if one leg is monic (which, in fact, makes up the definition of adhesiveness [27]). Vice
versa, there are also pushouts with both legs non-monic, which enjoy this property nevertheless [30].

Astonishingly, coequalizers seldom are VK: Consider the shape graph 2 ∶= 1
d
//

d′ //
2 and the diagram

D ∶ 2→ Set with D1 =D2 = 1 (a singleton set), Dd =Dd′ = id1. Clearly,

1 // // 1 // 1 (4)

is a coequalizer in Set. Then the cartesian transformation

τ ∶ (2
k
//

id2 //
2)⇒D

with k the non-identical bijection of 2 (any set with exactly two elements) is mapped to id1 by κ∗, i.e.
τ /≅ (κ

∗ ○κ∗)(τ).

Harald König, Uwe Wolter 7

3.2 An Elementary and Equivalent Characterization

As mentioned in the introduction it is very important for several software engineering use-cases to find an
easily checkable criterion for the Van Kampen property. In this paper we give such a feasible (necessary
and sufficient) condition. It comes in terms of the mapping behavior of all morphisms Dd in the diagram,
which is the basis for colimit computation.

Definition 5 (Mapping Path) Let G = SetB be a presheaf topos and D ∶ I→G be a diagram w.r.t. shape
graph I. We set Iop

1 ∶= {dop ∣ d ∈ I1}.

• A Path Segment of sort X ∈B is a triple (y,δ ,y′) with δ ∈ I1∪ Iop
1 and3

If δ = d ∈ I1 then y ∈Ds(d)(X),y′ =Dd(y) ∈Dt(d)(X)
and
If δ = dop ∈ Iop

1 then y′ ∈Ds(d)(X),y =Dd(y′) ∈Dt(d)(X)

Two path segments (y1,δ1,y′1) and (y2,δ2,y′2) of sort X are equal if y1 = y2, δ1 = δ2, and y′1 = y′2.
Moreover, two path segments are weak equal, (y1,δ1,y′1) =w (y2,δ2,y′2) in symbols, if (y1,δ1,y′1) =
(y2,δ2,y′2) or (y1,δ1,y′1) = (y′2,δ

op
2 ,y2).4

• A Non-empty Mapping Path in D of sort X ∈B is a sequence

P = [(y0,δ0,y1),(y1,δ1,y2),(y2,δ2,y3), . . . ,(yn−1,δn−1,yn)]

of path segments of sort X, where the third component of a segment always coincides with the first
component of its successor segment, and where n ≥ 1. We say that the above path connects y0 with
yn. If y0 = yn

5, the path is called cyclic.

• For each y ∈Di(X), where i ∈ I0 and X ∈B, there is an Empty Mapping Path [] of sort X connecting
y with itself.

• For any X ∈B, any i, j ∈ I0 and any z ∈Di(X), z′ ∈D j(X) we write

z ≡X z′

if there is a mapping path of sort X connecting z with z′.

• A mapping path is proper if there are no two distinct path segments that are weak equal (thus all
empty paths and paths of length 1 are proper).

• Two paths for X ∈ B are equal if they are equal as sequences, i.e, if they have the same length and
are segmentwise equal.

According to our disjointness assumptions the coproduct∐i∈I0
Di is obtained by sortwise unions:

∀X ∈B ∶ (∐
i∈I0

Di)(X) ∶= ⋃
i∈I0

Di(X). (5)

In such a way, the existence of mapping paths of sort X yields a binary relation ≡X on (∐i∈I0
Di)(X).

3 Whenever i d // j ∈ I1 and we apply a mapping in the family ((Dd)X ∶Di(X)→D j(X))X∈B, we write Dd instead of
(Dd)X .

4
(dop
)

op
∶= d.

5 By the introductory remarks on disjointness of artefacts, this means that y0 and yn are elements of the same Di.

8 Van Kampen Colimits

A path of sort X connecting y0 and yn can be composed with a path of sort X connecting z0 and zn if
yn = z0, and the composition is just given by the concatenation of both sequences. Each path connecting
y0 with yn can be reversed by replacing each segment (y,δ ,y′) by (y′,δ op,y) and then reversing the whole
sequence. Together with the existence of empty paths, this ensures that we obtain a family ≡= (≡X)X∈B
of equivalence relations on∐i∈I0

Di.
It is a straightforward calculation to see that it is also a congruence. Let be given a B-arrow op ∶X→Y .

Due to our disjointness assumptions and (5) we have for all k ∈ I0 and all x ∈Dk(X)

(∐
i∈I0

Di)(op)(x) ∶=Dk(op)(x) ∈Dk(Y). (6)

If z ≡X z′, then Di(op)(z) ≡Y D j(op)(z′), the connecting path of sort Y arising from concatenating trans-
lated segments (Ds(d)(op)(y),d,Dt(d)(op)(y′)) / (Dt(d)(op)(y),dop,Ds(d)(op)(y′)) for all segments
(y,d,y′) / (y,dop,y′) in the path of sort X connecting z with z′. We remark that the translated path may
not be proper although the original path was.

It is well-known [20] that colimits are computed sortwise in G by considering the relations

∼X= {(y,Dd(y)) ∣ d ∈ I1,y ∈Ds(d)(X)}

for all X ∈B. The colimit is∐i∈I0
Di modulo the smallest congruence relation which comprises the family

(∼X)X∈B. On the one hand y ∼X y′ implies y ≡X y′. On the other hand z ≡X z′ results from a mapping path
along a sequence of elements z = z0,z1, . . . ,zn = z′ for which either zi ∼X zi+1 or vice versa. This yields the
first statement in

Fact 6 (Colimit Computation) Let G be a presheaf topos.

1. The colimiting cocone of diagram D ∶ I→G is given by

D
κ⇒(∐

i∈I0

Di)/ ≡ (7)

where κi = []≡○ ⊆i with []≡ the canonical morphism.

2. For X ∈B, i, j ∈ I0 and z ∈Di(X), z′ ∈D j(X) let z ≡p
X z′ if there is a proper mapping path from z to

z′, then

D
κ⇒(∐

i∈I0

Di)/≡p

is also a colimiting cocone.
⊓⊔

The second statement follows from a path reduction procedure (see Lemma 29 in the Appendix).
Hence mapping paths are the basis for colimit computation. In the present paper we will show that

mapping paths also play a crucial role for a simpler characterization of the Van Kampen property. The
following examples give a hint on the connection between these concepts.

Example 7 Let G = Set.

1. In (4) there are proper mapping paths [] and [(∗D,dop,∗B),(∗B,d′,∗D)] in D connecting ∗D with
itself.

Harald König, Uwe Wolter 9

2. Let I = ●d :: consist of one object and one loop. I.e. diagrams depict endomorphisms Af 99 .
It is astonishing that even the colimiting diagram D 1 with D = 1id 99 is not VK: Take
E = 2k 99 (with k the non-identity bijection of 2), τ ∶ 2→ 1, then E’s colimit is a singleton. In this
example, we have two proper mapping paths [] and [(∗,d,∗)] in D both connecting the element
∗ of 1 with itself. Note that this is just another presentation of example (4), since the colimit of

Af 99 can be obtained by the coequalizer of A
f
//

ida //
A) (see (14)).

3. D= ({x}
f
//

g // {0,1}) with f (x) = 0,g(x) = 1 has the VK property (can be checked by elementary

means6). There is exactly one proper mapping path connecting 0 and 1, namely (0, f op,x),(x,g,1).
Moreover, there is exactly one proper path connecting 0 with itself (namely the empty one, the
hypothetical path (0, f op,x),(x, f ,0) is not proper, see Def.5). In the same way x has only one
path back to itself, namely the empty one (the hypothetical path (x, f ,0),(0, f op,x) is again not
proper).

As suggested by these examples, uniqueness of proper mapping paths between two elements of the same
sort X in the sets (Di(X))i∈I0 is a crucial feature for the Van Kampen property to hold. Indeed, we will
prove

Theorem 8 (Characterization of VK cocones) Let G = SetB be a presheaf topos and D ∶ I→ G be a
diagram with I a finite directed multigraph. Let

D
κ⇒ ∆S

be a colimiting cocone. The cocone is a Van Kampen cocone if and only if for all X ∈ B, all i, j ∈ I0 and
all z ∈Di(X), z′ ∈D j(X): There are no two different proper mapping paths in D connecting z and z′.

3.3 Application of Theorem 8

In order to demonstrate the benefits of this criterion, we consider a more substantial example. We let

B = E t
//

s //
V (idE and idV not shown), thus our base presheaf topos is G = SetB, the category of

directed multi-graphs. In the sequel, we depict vertices as rectangles and edges are arrows pointing from
its source to its target. In Fig.1 the three highlighted graphs D1, D2, and D3 depict meta-models for type
systems:

• D1 represents parts of the domain of algebraic specifications: Operations have an arbitrary number
of sort-typed input parameters and exactly one return parameter.

• In D2 terminology of abstract data types is used: Functions have an arbitrary number of typed
input and return parameters, resp.7

6The coequalizer of f and g is {0,1} ! // {x} . Any cartesian nat. trafo τ ∶E→D with E= X
f ′
//

g′ //
Y yields Y ≅X+X

with f ′,g′ the two coproduct injections and hence Y
[idX ,idX]// X to be the colimit of E. This yields a pullback over !.

7This is a consequence of the fact that any graph morphism τ2 ∶E→D2 admits arbitrary in/return relations between functions
(i.e. vertices v ∈ E with τ2(v) = Function) and types (vertices v ∈ E with τ2(v) = Type).

10 Van Kampen Colimits

Sort

Operation

in

D1

d-13

return1

Interface

Operation

in return1

own

D3

Type

Function

in

D2
return

Method

implmnts

S/I

Op

d13

in return

S/T

d-12

D13

D12

d12

in

T/I

F/M

in

D23
d23

d-23

1

Figure 1: A colimiting cocone of a diagram of data models

• D3 is the object-oriented view: Interfaces own operations, which have inputs and one return pa-
rameter typed in interfaces, resp. Methods implement operations, their input parameters may be
of specialized type.

Figure 1 represents a multimodeling scenario [8]. Reasoning about these collective models (the multi-
model) as one artefact requires the matching of different terminology of each of the graphs: E.g. same-
ness of terminology in graphs D1 and D2 is enabled by defining a relation on D1 ×D2: Graph D12

consists of exactly one vertex S/T , d−12(S/T) = Sort, d12(S/T) = Type, such that span D1
d−12← D12

d12→D2

specifies sameness of terms ”Sort” and ”Type” in graphs D1, D2. In the same way span D1
d−13← D13

d13→D3
specifies sameness of terms ”Sort” and ”Interface” (in D1 and D3) as well as ”Operation” (in both graphs)
together with the in- and return relationships. Moreover, relation ”in” of term ”Method” in D2 is declared
to be equal to property ”in” of term ”Function” in D3.

Reasoning about the multimodel means to impose constraints that spread over different multimodels.
E.g. we could claim that ”The return type of a method’s implemented operation (as specified in D3) has
to be contained in the list of return types of the function (as specified in D2)”. In order to check this
inter-model constraint, it is necessary to construct the colimit of the 6 graphs.

Formally, for schema graph I =

1 12−12oo 12 // 2

13
−13

__

13

23
−23

??

23~~
3

we obtain diagram D ∶ I→G and can construct the colimiting cocone D
κ⇒ S. S together with the scope

of the above mentioned constraint is shown in Fig.2.
Moreover, to check consistency of instances τi ∶ Ei →Di, i ∈ {1,2,3} against the above formulated

constraint, one has to declare sameness of instance elements with the help of morphisms τk ∶Ek→Dk, k =

Harald König, Uwe Wolter 11

S

Type

Operation Method
implmnts

in return

own

in

return

[⊆]

Figure 2: The colimit of the diagram from Fig.1 with a new constraint

{12,13,23} and spans (e−12,e12), (e−13,e13), and (e−23,e23) between (E1,E2), (E1,E3), and (E2,E3),
resp. Of course, typings τi have to be compatible with matching, i.e. we obtain a natural transformation
τ ∶ E⇒D between diagrams of type I→G. Consistency checking is then carried out by constructing the
colimit K of E and checking whether the resulting typing arrow σ ∶K→ S fulfills the constraint, see [23].

Let us momentarily ignore constraint checking and just consider the relation between this amal-
gamated instance σ and the original component instances (τi)i∈{1,2,3,12,13,23}: It is necessary to faith-
fully trace back all τi from σ , otherwise we would loose information about the origin of the ele-
ments in the domain of σ . This means that we require κ

∗
i (σ) ≅ τi, i.e. the Van Kampen property

for the cocone κ has to hold. However, it turns out, that the property is violated: This can be seen
in this simple example by guessing a corresponding instance constellation (we write x ∶ T whenever
τ (x) = T): Let E1(V) = {s ∶ Sort,s′ ∶ Sort},E1(E) = ∅, E2(V) = {t1 ∶ Type,t2 ∶ Type},E2(E) = ∅, and
E3(V) = {i ∶ Inter f ace, i ∶ Inter f ace},E3(E) = ∅. They can be matched as follows

s = t1,s′ = t2 by E12;s = i,s′ = i by E13;t1 = i,t2 = i by E23

But this can also happen in practice: Suppose two modelers both have a common understanding that the
two sorts as well as the two types and the two interfaces must be kept seperate, resp. One modeler might
define the matches E12 and E23 and, independently and inadvertently, the second modeler defines the
match E13.

However, the colimit K of E is a graph with one vertex only, cf. the construction in Fact 6. Clearly,
κ
∗
i (σ) /≅ τi since κi are monomorphisms, hence the domains of κ

∗
i (σ) are singletons, as well.

In more complex examples guessing of these instance constellations is much more difficult. In these
cases, Theorem 8 is a more reliable indicator for VK validity or violation. In the present example, the
indicator are the two different proper mapping paths

(Sort,dop
−13,S/I),(S/I,d13,Inter f ace),(Inter f ace,dop

23 ,T /I),(T /I,d−23,Type)

and
(Sort,dop

−12,S/T),(S/T,d12,Type)

of sort V from Sort to Type in D.
At least from this example we derive the slogan that the Van Kampen property holds, if there is no

redundant matching information in D. It is easy to see that the negative effect vanishes if we reduce

12 Van Kampen Colimits

the diagram accordingly, i.e. if we erase matching via D12 since this information is already contained in
the transitive closure of matchings D13 and D23. In this way, the above mentioned modelers can indeed
work independently!

We finally remark that there are also use cases with more complex schema categories: It is useful
to pass from B to a more complex B′, if we consider constraints to be entities in their own right, which
shall also be matched across different graphs. Consider for this Fig.2: The cardinality constraint(s) from
D1 and D2 are not inherited to S, because the colimit was only constructed with respect to edges and
vertices, i.e. only for the graph structure. If we want to transfer the constraint ”Operations possess unique
return type” (cf. annotation ”1” at edges return in D1 and D2) to the colimit, we can do that by imposing
it to D13, as well, and treat it as extension of the grafical structure. This can be achieved by extending B
to the category B′ =

U 1 //

b

;;

a

##
E

s //
t
// V

(identities omitted) where a = s○1, b = t ○1. Object U and outgoing arrows depict the uniqueness con-

straint and its arity shape graph a 1 // b , cf. [4, 21]. Objects Di ∈ SetB
′

enhance directed multi-graphs
by a third set Di(U) (of constraint annotations) together with a mapping Di(1) ∶Di(U) →Di(E) indi-
cating at which edge in the graph the constraint is annotated. In such a way, the colimit automatically
carries all constraints of the component graphs. Since Theorem 8 is valid for arbitrary B, reasoning about
the Van Kampen property is possible in the same way as before.

4 Towards Colimits

4.1 Pushouts

The original definition of Van Kampen pushouts was given in [27]: A pushout of a diagram (a span)

D1 D0
h1oo h2 // D2 is said to have the Van Kampen property if for any commutative cube

E0

��

}}

// E2

��

~~
E1

��

// K

σ

��

D0
h2 //

h1

}}

D2

κ2
~~

D1 κ1
// S

with this pushout in the bottom and back faces pullbacks, the front faces are pullbacks if and only if the
top face is a pushout. It is easy to see that this is an instance of the general definition of Van Kampen
colimits in Def.4:

• If the front faces are pullbacks, then the back faces are the result of applying κ
∗. Then the counit

ε ∶ κ∗ ○κ
∗⇒ Id of adjunction is an isomorphism if and only if the cube’s top face is already a

pushout.

Harald König, Uwe Wolter 13

• If the top face is a pushout, then (up to isomorphism) σ is the result of applying κ∗. Then the
unit η ∶ Id ⇒ κ

∗ ○κ∗ is an isomorphism if and only if κ
∗(σ) produces the original cube up to

isomorphism, i.e. the original front faces are pullbacks.
Hence, the two implications ”Front face pullbacks iff top face pushout” actually reflect the two statements
”The counit is an isomorphism” and ”The unit is an isomorphism”.

In [30] we already stated a characterization of the Van Kampen property for pushouts. It comes in
terms of cyclic mapping structures within D0.

Definition 9 (Domain Cycle, [18]) Consider a span D1 D0
h1oo h2 // D2 in G = SetB. For X ∈B we

call a sequence [x0,x1, . . . ,x2k+1] of elements of D0(X) a domain cycle (for h1 and h2), if k ∈N and the
following conditions hold:

1. ∀ j ∈ {0,1, . . . ,2k+1} ∶ x j /= x j+1

2. ∀i ∈ {0, . . . ,k} ∶ h1(x2i) = h1(x2i+1)
3. ∀i ∈ {0, . . . ,k} ∶ h2(x2i+1) = h2(x2i+2)

where 2k+2 ∶= 0. A domain cycle is proper if xi /= x j for all 0 ≤ i < j ≤ 2k+1.
The original criterion for Van Kampen pushouts (Theorem 3 in [30]) came in terms of the absence of
arbitrary domain cycles. In order to use the theorem in the present paper we slightly reformulate it: The
Van Kampen property can be checked by validating the absence of proper domain cycles only:
Theorem 10 (Condition for VK pushout) A pushout

D0
h2 //

h1
��

D2

κ2

��
D1 κ1

// S

in G = SetB is a VK pushout if and only if there is no proper domain cycle for h1 and h2. ⊓⊔
This variant of the theorem easily follows from the original version and Lemma 32 in the appendix.

We see that this already gives a feasible condition to validate the Van Kampen property for pushouts.
The plan of the following sections is to transfer this knowledge to special mapping paths in coequalizer
diagrams (Sect.4.2) and from there to mapping paths in arbitrary colimits (Sect.4.3).

4.2 From Pushouts to Coequalizers

The following fact is well-known [20]:

Lemma 11 Let B
f
//

g //
D be two arrows in any category with colimits.

B

κB

77
f
//

g //
D

κD // S

is a coequalizer diagram if and only if

B+B
[f ,g] //

[id,id]
��

D

κD
��

B
κB

// S

(8)

14 Van Kampen Colimits

is a pushout. ⊓⊔
The ”if”-part has to be made precise: If h ∶ B→ S,c ∶ D→ S is the pushout of [id, id] and [f ,g], then c
is the coequalizer of f ,g and h = c○ f = c○g. As a our first new result we show that the equivalence in
Lemma 11 extends to the VK property if the underlying category is a presheaf topos G.

Lemma 12 In G = SetB the coequalizer im Lemma 11 has the Van Kampen property, if, and only if the
pushout (8) has the Van Kampen property.

Proof: Let the diagram D ∶ 2→G be defined by D1 = B, D2 =D, Dd = f , and Dd′ = g.
”If-part”: Let (8) be a VK pushout and τ ∶ E⇒D ∶ 2→G be a cartesian natural transformation with

D1 = B, D2 =D, Dd = f , and Dd′ = g. This yields two pullbacks (see Fact 1) in the rear of

E1+E1

τ1+τ1

��

[id,id]

{{

[Ed ,Ed′] // E2

τ2

��

E1

τ1

��

B+B
[f ,g] //

[id,id]
{{

D

κD��
B

κB
// S

(9)

with the VK pushout in the bottom. Constructing the coequalizer E1

κ1

66
Ed

//
Ed′ //

E2
κ2 // K , we obtain

unique σ ∶K → S making the resulting cube’s front faces

E1
κ1 //

τ1

��

K

σ

��

E2
κ2 //

τ2

��

K

σ

��
B

κB // S D
κD // S

(10)

commute (i.e. σ = κ∗(τ)). Using Lemma 11 and the VK property of the bottom in (9), the squares in
(10) both become pullbacks. This means that κ

∗(κ∗(τ)) = κ
∗(σ) = τ ∈G ⇓D up to isomorphism, hence

the unit of adjunction κ∗ ⊣ κ
∗ is an isomorphism, i.e. κ

∗ is an equivalence8, which yields the desired
result by Def.4.

”Only-if-part”: Let the coequalizer diagram in Lemma 11 be a VK coequalizer, and let the corre-
sponding pushout of Lemma 11 in the bottom of (9) be accompanied with an arbitrary pullback span in
the rear, given by τ1 ∶ E1 → B, τ2 ∶ E2 → D, ϕ ∶ P→ E2, ψ ∶ P→ E1 and µ ∶ P→ B+B. Then this span
must be isomorphic to a span of the form depicted in (9): For the two left faces we get an isomorphism
ι ∶E1+E1→P, with ψ ○ι = [id, id] and µ ○ι = τ1+τ1, because τ1+τ1 is a pullback of [id, id] and τ1 by Fact
1. The composition ϕ ○ ι ∶ E1 +E1 → E2 establishes a second commutative back square that inherits the
pullback property from the given arbitrary back right square via the isomorphism ι since µ ○ ι = τ1+τ1.
The composition ϕ ○ ι ∶ E1+E1→ E2 can be split into its components ϕ ○ ι = [ϕ ○ ι○ ⊆1,ϕ ○ ι○ ⊆2], where
⊆1/2 are coproduct injections for E1+E1. Thus we can define a diagram E ∶ 2→G with Ed/d′ ∶=ϕ ○ι○ ⊆1/2.

8 Remember that the counit is always an isomorphism in G, cf. Sect.3.

Harald König, Uwe Wolter 15

To see that the given τ1 and τ2 provide a cartesian natural transformation, one prolongs the pullback
of τ2 along [f ,g] along the two coproduct injections of B into B+B:

E1

τ1

��

⊆1
//

⊆2 //
E1+E1

τ1+τ1

��

[ϕ○ι○⊆1,ϕ○ι○⊆2] // E2

τ2

��
B ⊆1

//
⊆2 //

B+B
[f ,g]

// D

(that the two left squares are pullbacks follows from extensivity). By pullback composition we obtain
τ ∶ E⇒D ∶ 2→G.

Constructing the pushout on the top face, we obtain a unique σ ∶ K → S making the squares in (10)
commute. Using Lemma 11 for the top face and the VK property of the coequalizer in Lemma 11 we
can conclude that the squares in (10) are pullbacks as well. This shows that the bottom of 9 has the VK
property. ⊓⊔

In Def.5 we depicted path segments in the form (y,δ ,y′) where δ = d or δ = dop with d ∈ I1. In
order to simplify notation, we will write (y, p,y′) with p ∈ { f ,g} in the special case I = 2, i.e. the case of

coequalizers B
f
//

g //
D . This means that path segments are equal only if the names of their middle com-

ponent coincide, which is important for the case f = g. If p ∈ { f ,g} with −p we mean its ”complement”,
i.e. p = f ⇒−p ∶= g and p = g⇒−p ∶= f .

Definition 13 (Path Disjointness) Let D ∶ I → G be an arbitrary diagram. We say that two different
mapping paths P1 and P2 in D of sort X are disjoint if non of the path segments in P1 is weak equal9 to a
path segment in P2.

Thus we deliberately excluded disjointness of [] and []. This enables simpler formulations for the
forthcoming results. Hence in this paper disjointness implies distinctness.

Lemma 14 (Domain Cycles and Mapping Paths) Let G = SetB and X ∈ B. There is a proper domain

cycle of sort X for the span B B+B
[f ,g] //[id,id]oo D if and only if there are z,z′ ∈ D(X) and two disjoint

proper mapping paths connecting z and z′.

Proof: We remind that the notation [f ,g] ∶ B+B→D means that f acts on the first copy of B in B+B and
g on the second, e.g. B1 =B =B2 and [f ,g] ∶B1+B2→D, x ∈B1(X) for some X ∈B, then [f ,g](x) = f (x).
”⇒”. Let [x0,x1, . . . ,x2k+1] be a proper domain cycle of elements of (B+B)(X). I.e. we have

[id, id](x0) = [id, id](x1)
[f ,g](x1) = [f ,g](x2)

⋮
[id, id](x2k) = [id, id](x2k+1)
[f ,g](x2k+1) = [f ,g](x0)

A pair (x2i,x2i+1) in the kernel of [id, id] means that x2i = x2i+1 as elements of B, but they occur in
different copies of B+B (because the cycle is proper, i.e. x2i /= x2i+1 as elements of B+B). Thus, if
p ∈ { f ,g} is defined on x2i, then −p is defined on x2i+1. A pair (x2i+1,x2i+2) in the kernel of [f ,g] means

9Recall the definition of weak equality in Def.5.

16 Van Kampen Colimits

that p(x2i+1) = p′(x2i+2) with p, p′ ∈ { f ,g} depending on the copy of B, where x2i+1,x2i+2 are contained,
resp. This establishes a mapping path which starts with the segments

(p0(x0), pop
0 ,x0),(x1,−p0,−p0(x1)),(p1(x2), pop

1 ,x2),(x3,−p1,−p1(x3))

where p0, p1 ∈ { f ,g} according to xm’s membership to a copy of B (m ∈ {0,1,2,3}). It can be depicted as
follows:

B x0 = x14
p0

zz

� −p0

''

x2 = x3.
p1

ww

� −p1

%%
D p0(x0) −p0(x1) = p1(x2) −p1(x3)

The whole path is the sequence of consecutive pairs

[(pi(x2i), pop
i ,x2i),(x2i+1,−pi,−pi(x2i+1))]0≤i≤k

where pi ∈ { f ,g} according to x2i’s membership to a copy of B. Because [f ,g](x2k+1) = [f ,g](x0) (see
Def.9), this non-empty path (its length is 2k+2 > 0) connects p0(x0) with itself. It remains to show that
the constructed path is proper, too. Assume to the contrary that it is not proper, then there are indices
0 ≤ i < j ≤ 2k+1 with xi = x j as elements of B. Since the domain cycle was proper xi and x j must occur in
different copies of B+B. In such a way, the two segments where xi and x j, respectively, appear are not
weak equal since the corresponding middle components of the two segments are neither equal nor equal
up to ()op, which yields the desired properness.

Since the empty path (being proper and disjoint from the constructed path) also connects p0(y0) with
itself, the first part of the proof is complete.

”⇐” Assume now that there are z,z′ ∈D(X) admitting two disjoint proper mapping paths connecting
z and z′. Thus both of them must take the form

[(z = z0, pop
0 ,y0),(y0,−p0,z1), . . . ,(zn−1, pop

n−1,yn−1),(yn−1,−pn−1,zn)] (11)

for some pi ∈ { f ,g}. By the remark after Def.5 the first can be concatenated with the reversed second
path yielding a cyclic proper (by disjointness) path. Since the two paths were different, the concatenated
path is non-empty. We assume that this cyclic path is given by (11), i.e. zn = z0 and n ≥ 1.

Define elements of B+B as follows: Let y1
i and y2

i be in different copies of B, but y1
i = yi = y2

i as
elements of B. The choice of copy depends on the arrangement of f and g: If pi = f , then y1

i is in the first
copy. If pi = g, then y1

i is in the second copy (i ∈ {0, . . . ,n−1}). This yields

[f ,g](y1
i) = pi(yi) and [f ,g](y2

i) = −pi(yi) (12)

We claim that
y1

0,y
2
0,y

1
1,y

2
1, . . . ,y

1
n−1,y

2
n−1 (13)

is a proper domain cycle of [id, id] and [f ,g]: On the one hand for all i ∈ {0, . . . ,n−1}: [id, id](y1
i) =

[id, id](y2
i). On the other hand, by (12) and the mapping path structure, [f ,g](y2

i−1) = −pi−1(yi−1) =
pi(yi) = [f ,g](y1

i) (0 < i < n) and [f ,g](y2
n−1) = −pn−1(yn−1) = zn = z0 = p0(y0) = [f ,g](y1

0). It remains
to prove that the domain cycle is proper. Assume for this that there are 0 ≤ i ≤ j < n such that yb

i = yc
j in

(B+B)(X) where b,c ∈ {1,2} and such that i < j or b /= c. This means that yi = y j (as elements of B) and

Harald König, Uwe Wolter 17

they are in the same copy of B. We can further assume i < j, because y1
i and y2

i are in different copies of
B. Consider the four segments

(zi, pop
i ,yi),(yi,−pi,zi+1),(z j, pop

j ,y j),(y j,−p j,z j+1)

of the above mapping path. If b = c, then pi = p j and the first and the third segments are equal. If b /= c,
then pi = −p j and the first and the forth segments are weak equal. This contradicts properness of the
mapping path and settles the claim. ⊓⊔

Theorem 15 (Condition for VK coequalizers) Let G = SetB and D ∶ 2→G. The coequalizer diagram

D1

κ1

66
Dd

//
Dd′ //

D2
κ2 // S

has the Van Kampen property, if and only if for all X ∈B and all z,z′ ∈D2(X) : There are no two disjoint
proper mapping paths of sort X in D connecting z and z′.

Proof: Let again B ∶=D1,D ∶=D2, f ∶=Dd ,g ∶=Dd′ .
The coequalizer diagram has the Van Kampen property if and only if the pushout (8) has the Van

Kampen property (by Lemma 12) if and only if for all X ∈B there is no proper domain cycle for [idB, idB] ∶
B+B→ B and [f ,g] ∶ B+B→D of sort X (by Theorem 10) if and only if for all X ∈B no z,z′ ∈D(X) can
be connected by two disjoint proper mapping paths of sort X (by Lemma 14). ⊓⊔

Recall the already made observations of Example 7: For these simple examples they confirm the
statement of Theorem 15.

4.3 From Coequalizers to Colimits

It is well-known [20], that the colimit of D ∶ I→G can be computed by constructing the coequalizer of

∐d∈I1
Ds(d)

D⃗d

//
i⃗d //

∐ j∈I0
D j (14)

Here D⃗d and i⃗d are mediators out of the involved coproducts:

∐d∈I1
Ds(d)

D⃗d // ∐ j∈I0
D j ∐d∈I1

Ds(d)
i⃗d // ∐i∈I0

Di

Di

OO

Dd // D j

OO

Di

OO

Di

OO

(for all edges i d // j in I1). We stress the fact that in the left coproduct of (14) an object Di occurs
as often as there are edges d leaving i in graph I, i.e. if there are e.g. two edges with source i, then two
copies of Di occur.

As our second new result we show that the equivalence in (14) extends, for arbitrary topoi, to the VK
property.

18 Van Kampen Colimits

Lemma 16 The cocone (1) is VK if and only if the cocone

∐d∈I1
Ds(d)

κ
′

44
D⃗d

//
i⃗d //

∐ j∈I0
D j

κ // S (15)

resulting from constructing the coequalizer in (14) is VK.

Proof: Let κ
∗ ∶ G↓S→ GI ⇓D be the functor introduced in (3), 2 ∶= 1

d
//

d′ //
2 be the (already used)

shape graph for coequalizers, D ∶ 2→G the functor mapping this shape graph to the objects and arrows
in (14) and

κ
∗ ∶G↓S→G2 ⇓D

be the pullback functor for the colimiting cocone in (15). By Definition 4, the lemma is proven, if we
can establish an equivalence ≅ of categories between GI ⇓D and G2 ⇓D, such that

G↓S
κ
∗

{{

κ
∗

##

GI ⇓D ≅ ?
// G2 ⇓D

(16)

commutes up to natural isomorphism.
Such an equivalence can be determined as follows: Given τ ∶E⇒D in GI ⇓D, then - at least in topoi

- the pullbacks of τi along idDi yield a pullback (cf. Fact 1)

∐d∈I1,s(d)=iEs(d)
i⃗d

E

i //

∐d∈I1 ,s(d)=i τs(d)
��

Ei

τi

��
∐d∈I1,s(d)=iDs(d)

i⃗d
D

i // Di

for each i ∈ I0. These pullbacks can be summed over i yielding the pullback (cf. Fact 2)

∐d∈I1
Es(d)

i⃗d
E

//

∐d∈I1 τs(d)
��

∐i∈I0
Ei

∐i∈I0 τi

��
∐d∈I1

Ds(d)
i⃗d

D

// ∐i∈I0
Di

(17)

Moreover for fixed j ∈ I0, the pullbacks of τ j and Dd yield a pullback

∐d∈I1,t(d)= jEs(d)
E⃗d

j

//

∐d∈I1 ,t(d)= j τs(d)
��

E j

τ j

��
∐d∈I1,t(d)= jDs(d)

D⃗d
j

// D j

Harald König, Uwe Wolter 19

for each j ∈ I0 (D⃗d
j
, E⃗d

j
being appropriate universal coproduct arrows). Again, those pullbacks can be

summed over j yielding the second pullback

∐d∈I1
Es(d)

E⃗d //

∐d∈I1 τs(d)
��

∐ j∈I0
E j

∐ j∈I0 τ j

��
∐d∈I1

Ds(d)
D⃗d // ∐ j∈I0

D j

(18)

Obviously D ∶ 2→G creates the bottom rows in (17, 18). Analogously, let E ∶ 2→G form the top rows in
(17, 18). Then we have established an assignment τ ↦(∐d∈I1

τs(d),∐ j∈I0
τ j), the result being a cartesian

natural transformation in G2 ⇓D. This assignment

φ ∶GI ⇓D→G2 ⇓D (19)

on objects can be extended to morphisms by similar pullback summation: Let τ ∶E⇒D, τ
′ ∶E′⇒D and

a morphism α ∶ τ ⇒ τ
′ be given in GI ⇓D. Then – in the same way as before – the summation over the

intermediate commutative squares

∐d∈I1,s(d)=iEs(d)
i⃗d

E

i //

∐d∈I1 ,s(d)=i αs(d)
��

Ei

αi

��

∐d∈I1,t(d)= jEs(d)
E⃗

j
d //

∐d∈I1 ,t(d)= j αt(d)
��

E j

α j

��
∐d∈I1,s(d)=iE

′
s(d)

i⃗d
E′
i // E′i ∐d∈I1,t(d)= jE

′
s(d)

E⃗′ j
d // E′j

yields φ(α)1 =∐d∈I1
αs(d) and φ(α)2 =∐ j∈I0

α j with φ(α) ∶ φ(τ)⇒ φ(τ
′). Obviously φ respects iden-

tities and composition, because the coproduct functor has these properties. Thus (19) is a functor.

Recall that ⊆∗ depicts the pullback functors along coproduct injections based on chosen pullbacks.
For future use, we remark that extensivity yields

⊆∗d (φ(τ)1) ≅ τs(d) and ⊆∗j (φ(τ)2) ≅ τ j. (20)

It remains to show that φ is an equivalence of categories and that (16) commutes up to natural
isomorphism. For this consider Fig.3. The front face depicts input data for the hypothetical inverse

functor from G2 ⇓D to GI ⇓D, namely E = E
h2

//
h1 //

E ′ (a diagram with shape 2) and (θ ,θ ′) ∶ E⇒D a

cartesian natural transformation. One constructs pullbacks along coproduct injections: On the left hand
side this is performed for all d ∈ I1 yielding some τd ∶ Ed →Ds(d) for some Ed . Here, we work with an
arbitrary pullback - not necessarily the chosen one. Later, we determine the concrete choice! On the
right hand side, it is performed for all j ∈ I0 yielding τ

′
j, in this case we take chosen pullbacks.

20 Van Kampen Colimits

Ed

τd

��

md

yy

Ed
// E′j

τ
′
j

��

m′
j{{

E

θ

��

h1 //
h2

// E ′

θ
′

��

Ds(d)
Dd //

kK⊆d

yy

D j
mM

⊆ j{{
∐d∈I1

Ds(d)
i⃗d //
D⃗d

// ∐ j∈I0
D j

(21)

Figure 3: Obtaining φ ’s inverse functor

Note that the bottom square commutes only via D⃗d . By extensivity

θ ≅ ∐
d∈I1

τd and θ
′ ≅ ∐

j∈I0

τ
′
j (22)

There is a unique Ed ∶Ed→E′j (dashed arrow) making the top face with h2 and the back face commutative.
Moreover, the back face is pullback (by pullback composition and decomposition).

For fixed d ∈ I1 with i = s(d), we now draw the same diagram with Dd replaced by idDi in the bottom
of the back face (hence also D j replaced by Di), then the same reasoning via h1 and i⃗d yields a different
dashed arrow in

Ed

τd

��

md

xx

// // // E′i

τ
′
i

��

m′
i{{

E

θ

��

h1 //
h2

// E ′

θ
′

��

Ds(d)
idDi //

kK⊆d

yy

Di
mM

⊆i||
∐d∈I1

Ds(d)
i⃗d //
D⃗d

// ∐i∈I0
Di

which is forced to be an isomorphism by the pullback property of the back face. Thus our choice of τd –
the pullback along coproduct injection ⊆d – can now concretely be determined: We can take

τd = τ
′
i

(hence Ed = E′i) for all i d // j ∈ I1. Substituting this in the back face of (21), we deduce that E =
(Ed ∶E′i →E′j)d∈I1 becomes an I-shaped diagram, and τ

′ ∶= (τ
′
i ∶E′i →Di)i∈I0 ∶E⇒D is a cartesian natural

transformation. In this way, we established an assignment ψ ∶ (θ ,θ ′)↦ τ
′ mapping objects of G2 ⇓D to

objects of GI ⇓D. Functoriality of chosen pullbacks along ⊆i extends ψ to a functor.
To show that φ and ψ are pseudo-inverses of each other, recall from (22) and the fact that τd = τ

′
i that

ψ(θ ,θ ′) = τ
′ ⇒ ⊆∗d (θ) ≅ τ

′
i and ⊆∗j (θ

′) = τ
′
j. (23)

Harald König, Uwe Wolter 21

For any τ ∈GI ⇓D, let τ
′ ∶=ψ(φ(τ)) then (23) and (20) yield for all j ∈ I0

τ
′
j ≅ ⊆∗j (φ(τ)2) ≅ τ j

In the same way for all (θ ,θ ′) ∈G2 ⇓D and (γ,γ ′) ∶= φ(ψ(θ ,θ ′)) with τ
′ ∶= ψ(θ ,θ ′) we obtain from

(22):
(γ,γ ′) = (∐

d∈I1

τ
′
s(d),∐

i∈I0

τ
′
i) ≅ (θ ,θ ′)

hence id ≅ ψ ○φ and φ ○ψ ≅ id, where naturality of isomorphisms arise from universality properties of
involved constructions.

Finally, since colimit in (1) and coequalizer in (15) are related via

κ○ ⊆ j= κ j

for all j ∈ I0, pullback composition and the above construction of ψ show that (16) commutes up to
natural isomorphism (arising from natural isos due to pseudoriality of pullback functors). ⊓⊔

5 Proof of Theorem 8

The reader may now return to Def.5 in Sect.3 to remember the definition of mapping paths within dia-
gram D ∶ I→G. In order to relate them with mapping paths of 2-shaped diagrams we define a function
ϕ , which assigns to each proper mapping path in D a mapping path of diagram

D = ∐d∈I1
Ds(d)

D⃗d

//
i⃗d //

∐ j∈I0
D j .

For this we have to introduce some further notation: In order to visually distinguish mapping paths in D

from those in D, a path segment of a mapping path in D will be depicted (y,δ ,y′)D whereas (z,h,z′)D
depicts a segment of paths in D. For simplicity, we let h ∈ {i⃗d,D⃗d}. This means that two segments
(,h,)D and (,h′,)D are distinct if the names h and h′ are different, although probably i⃗d = D⃗d .

We already claimed that for each X ∈ B all elements of all sets (Di(X))i∈I0 are disjoint. But now we
also have to make sure that the carriers of ∐i∈I0

Di and ∐d∈I1
Ds(d) are sortwise disjoint (in the diagram

D). This can be achieved for any i d // j in I1 by making the coproduct injection

Di //
⊆i

d // ∐d∈I1,s(d)=iDs(d)

a renaming operator: For y ∈Di let (y,d) ∶=⊆i
d (y), thus we amend all elements of∐i∈I0

Di by adding the
index of the set they belong to in∐d∈I1

Ds(d). This yields

i⃗d(y,d) = y and D⃗d(y,d) =Dd(y).

We now define an assignment of one D-segment to two D-segments and let ϕ be the natural extension
to segment sequences of proper mapping paths. The segment assignment is

(y,d,y′)D↦ (y, i⃗d
op
,(y,d))D ,((y,d),D⃗d ,y′)D,

(y′,dop,y)D↦ (y′,D⃗d
op
,(y,d))D,((y,d), i⃗d,y)D.

We claim the following 4 properties:

22 Van Kampen Colimits

1. ϕ is a mapping from the set ℘ of proper paths in D to the set ℘ of proper paths in D which connect
elements of∐i∈I0

Di.

2. ϕ ∶ ℘ → ℘ is bijective.

3. P1 and P2 are disjoint if and only if ϕ(P1) and ϕ(P2) are disjoint.

4. For all z,z′ ∈ ∐i∈I0
Di: P connects z,z′ in D, if and only if ϕ(P) connects z,z′ in D.

Property 1 is easy to see, because if ϕ(P) would not be proper, it would contain two weak equal segments
S1 and S2. Their middle component is equal up to ()op, such that they can not be the image of a single D-
segment. We only consider the example of two weak equal segments S1 = (z,D⃗d ,z′)D, S2 = (z′,D⃗d

op
,z)D,

all other cases are similar. In this case we must have z = (y,d) and z′ =Dd(y) for some d ∶ i→ j and y ∈Di.
Thus S1 is in the image of segment (y,d,z′)D and S2 is in the image of weak equal segment (z′,dop,y)D,
which is impossible, because P is proper.

Property 2: ϕ is injective, because two different paths in D possess a first index at which their
segments differ. Let S1 = (y1,δ1,y′1) and S2 = (y2,δ2,y′2) be these segments. Their images differ according
to the above assignment (at the last component of the first and the first component of the second segment),
if δ1 /= δ2. Hence we can assume w.l.o.g. δ1 = d = δ2 for some d. Their images coincide if y1 = y2, but
then y′1 =Dd(y1) =Dd(y2) = y′2 and thus S1 = S2. It remains to prove surjectivity: Let P be a proper path
in D connecting two elements of∐i∈I0

Di. Obviously its length is 2n for some n ≥ 0. We prove existence
of a preimage by induction over n. n = 0: The empty path has preimage the empty path. Induction step:
We must have

P = [(z,hop,z′)D,(z′,h′,z′′)D,P′]

for some path P
′ of length 2n ≥ 0 and with h,h′ ∈ {i⃗d,D⃗d}. By the above amendment, we must have

z′ = (y,d) for some d ∶ i → j ∈ I1 and y ∈ Di. If h = h′, then P would not be proper, thus h = i⃗d and
h′ = D⃗d or vice versa. In the first case its preimage segment is S = (y,d,Dd(y))D, in the second case it is
S = (Dd(y),dop,y)D. Path P thus has preimage [S,P′] with ϕ(P′) = P

′ (by induction hypotheses).
Property 3 can be shown similar to injectivity now taking into account weak equal segments and

property 4 is obvious.
This behaviour of ϕ yields

Lemma 17 Let D ∶ I→G be a diagram and X ∈B. The following statements are equivalent:

• ∀i, j ∈ I0 ∶ ∀z ∈Di(X),∀z′ ∈D j(X): There are no two disjoint proper mapping paths in D connect-
ing z and z′.

• ∀z,z′ ∈ ∐i∈I0
Di(X): There are no two disjoint proper mapping paths in D connecting z and z′.

⊓⊔

Collecting all previous considerations, we obtain

Theorem 18 (Characterization of VK cocones with disjoint paths) Let G = SetB be a presheaf topos
and D ∶ I→G be a diagram with I a finite directed multigraph. Let

D
κ⇒ ∆S

be a colimiting cocone. The cocone is a Van Kampen cocone if and only if for all X ∈ B, all i, j ∈ I0 and
all z ∈Di(X), z′ ∈D j(X): There are no two disjoint proper mapping paths in D connecting z and z′.

Harald König, Uwe Wolter 23

Proof:

D
κ⇒ ∆S has the Van Kampen property

Lemma 16⇐⇒ D
κ⇒ ∆S i.e. ∐d∈I1

Ds(d)

κ
′

44
D⃗d

//
i⃗d //

∐ j∈I0
D j

κ // S has the Van Kampen property

Thm. 15⇐⇒ ∀X ∈B ∶ ∀z,z′ ∈ ∐i∈I0
Di(X) ∶

There are no two disjoint proper paths in D from z to z′

Lemma 17⇐⇒ ∀X ∈B ∶ ∀i, j ∈ I0 ∶ ∀z ∈Di(X),∀z′ ∈D j(X) ∶
There are no two disjoint proper paths in D from z to z′

⊓⊔
Proof of Theorem 8: In order to prove Theorem 8 we need to get rid of disjointness in Thm.18. The
”Enforcing-Disjointness-Lemma” 30 in the appendix shows that the existence of two different proper
paths from z1 to z′1 entails existence of two disjoint proper paths from possibly different z2 to z′2.
”⇐”: Because we stipulated that disjointness implies distinctness (see Def.13 and the remarks added
thereafter), this follows from Theorem 18.
”⇒”: This follows from the ”Enforcing-Disjointness-Lemma” and Theorem 18. ⊓⊔

6 Practical Guidelines

A main use case of the previous results can be found in software engineering and especially in model-
driven software designs: Components of diagrams are models (e.g. data models or metamodels which
govern the admissible structure of models), morphisms are relations between the models. As described
in the introduction, model assembly is often important (cf. Sect.3.3). It shall not only be carried out on
a syntactical level (models), but in the same way on the semantical level (instances) such that assembled
instances can correctly be decomposed into their original instances by pullback.

It is a goal to efficiently verify whether compositionality holds, i.e. whether the Van Kampen (hence-
forth abbreviated ”VK”) property is satisfied. Since model composition always requires computation
of colimits, VK-verification at the same time is desirable. In this section we will describe (1) a more
efficient colimit computation compared to Fact 6 and (2) how to simultaneously check the VK-property.

To further reduce verification effort, we will first look for criteria to decide, for a given diagram, if
VK holds or not, without checking explicitly the path conditions of Theorem 8. Moreover, we will show
that – in cases where the path condition is needed – one does not need to check the condition for all
i, j ∈ I0 but only for a smaller subset of indices.

6.1 Relevant Types of Mapping Paths

We will discuss now what kinds of paths and what pairs of paths we really need to check in practice. The
attentive reader may have noticed already that properness excludes cycles w.r.t. path segments but does
not exclude cycles w.r.t. elements. Let P = [(y0,δ0,y1),(y1,δ1,y2), . . . ,(yn−1,δn−1,yn)] be a mapping
path in a diagram D ∶ I→ SetB with finite I. By ιi, we denote the unique vertex in I0 with yi ∈Dιi .

Definition 19 A mapping path is called inner-cycle free, if for all indices 0 ≤ i < j ≤ n with j− i ≤ n−1:
yi /= y j.

24 Van Kampen Colimits

Empty mapping paths or paths of length 1 are inner-cycle free by definition. Note, that we allow P to be
an ”outer” cycle, i.e., y0 = yn. Lemma 31 in the appendix shows that any path can be made inner-cycle
free. Obviously, this reduction preserves properness and disjointness of mapping paths. Thus we obtain
the following corollary of Theorems 8 and 18:

Corollary 20 Let G = SetB be a presheaf topos and D ∶ I → G be a diagram with I a finite directed
multigraph. Let

D
κ⇒ ∆S

be a colimiting cocone. The following are equivalent:

(1) The cocone is a Van Kampen cocone
(2) ∀X ∈B, i, j ∈ I0,z ∈Di(X),z′ ∈D j(X) ∶ There are no two different proper paths from z to z′

(3) ∀X ∈B, i, j ∈ I0,z ∈Di(X),z′ ∈D j(X) ∶ There are no two disjoint proper paths from z to z′

(4) ∀X ∈B, i, j ∈ I0,z ∈Di(X),z′ ∈D j(X) ∶ There are no two disjoint inner-cycle free proper
paths from z to z′ ⊓⊔

In addition to a better variety of VK characterisations, this result also provides a high degree of freedom
for the implementation of algorithms: The result does not depend on whether an algorithm generates
only disjoint pairs of paths, or also builds paths with inner cycles. However, every algorithm based on
Corollary 20 still has to traverse all components (Di)i∈I0 . The next sections will explain why the traversal
of components can significantly be reduced.

6.2 Cyclic Shape Graphs

A directed cycle in I is a set of pairwise distinct edges d0, . . . ,dn−1 in I1 for some n ≥ 1 with t(di−1) =
s(dimod n) (i ∈ {1, . . . ,n}). If n = 1, the cycle is also called a loop (cf. Example 7). Let ends(d) =
{s(d),t(d)} be the set of endpoints of an edge d, then an undirected cycle in I is a set of pairwise distinct
edges d0, . . . ,dn−1 in I1 for some n ≥ 2 with ends(di−1)∩ ends(dimod n) /= ∅ (i ∈ {1, . . . ,n}). An example
for an undirected cycle is the shape graph 2 and also the shape graph in the example of Sect.3.3.

An important observation is that VK is violated, if I posseses a directed cycle

p = (i0
d0→ i1

d1→ . . .
dn−1→ in = i0)

and if for some X ∈B and some i ∈ {i0, . . . , in} the component Di(X) is a finite set. To see this, let w.l.o.g.
i = i0 and

Dp ∶=Ddn−1 ○ . . .○Dd1 ○Dd0 ∶Di0(X) →Din(X) =Di0(X).

be the corresponding composed function. Obviously, there exist y ∈Di0(X) and 1 ≤ k ≤ ∣Di0(X)∣ such that
Dk

p(y) = y, where the mappings can be chosen such that this results in a non-empty proper mapping path
connecting y with itself: Because the empty path also connects y with itself (cf. Def.5), VK is violated
by Cor.20.

6.3 Specialized Construction of Colimits

In this section, we prepare a general and more efficient algorithm for VK verification, which runs in the
background of a colimit computation. For this we need to distinguish between different characteristics
of shape graph I and derive from that a specialized colimit construction.

Harald König, Uwe Wolter 25

The universal construction recipe for colimits: (14) shows how to construct the colimit of any dia-
gram in a uniform way by means of a coequalizer. It allows to prove general results about colimits (as
we have demonstrated in the previous sections). Especially, in case of graphs I with infinite descending
chains and/or with directed cycles, this universal recipe is the best we have. E.g. colimit construction of

D1

Dd ++
D2,

Dd′
jj

and its VK verification is based on mapping paths within the coproduct D1+D2 and there is no way of
minimizing the space for the investigation.

Towards a simplified colimit computation and VK verification Coequalizers, however, can be in-
vestigated within a smaller space: It is not VK, if we can find for the corresponding diagram D ∶ 2→ SetB

a sort X ∈ B and an element y ∈D1(X) such that Dd(y) =Dd′(y), thus reducing investigations to D1.
However, even if Dd and Dd′ do have sortwise disjoint images, VK may be violated. Note, that those
image disjoint diagrams are exactly the diagrams we obtain when constructing pushouts, in the tradi-
tional way, by means of sums and coequalizer. To have VK we can require, in addition, that Dd and Dd′

are monic, since then [Dd ,Dd′] is monic and hence the pushout along this mono is VK (because each
topos is adhesive [17, 27]). In these special cases, this provides again significant simplification.

Even in the cases left unclear, the check of the VK property for coequalizers must not utilize the
condition in Cor.20, which is based on the universal construction recipe (14) for colimits10. Instead, we
can use directly the condition in Theorem 15, i.e. we need to check the condition in Cor.20 only for the
case i = j = 2, thus reducing investigations to D2. We will see in the forthcoming parts that all these
effects can often be used in more general cases to reduce analysis effort.

Beside these effects, there may be components that do not contribute to the construction of the col-
imit at all. In many cases, this simplifies colimit construction, because it is not necessary to compute
a quotient of the entire coproduct ∐ j∈I0

D j. Moreover, we will investigate how certain further assump-
tions on the properties of arrows in D (image-disjointness, injectivity) also simplify the algorithm. We
will discuss some further examples to motivate the announced specialized and practical construction of
colimits.

Since the case of directed cycles can immediately be handled in practical situations11, we assume
from now on that I is finite and has no directed cycles.

Irrelevant components For all indices in I with no incoming and exactly one outgoing edge, the
corresponding component does not contribute to the construction of the colimit. Typical examples are

D1
Dd // D2 D1

Dd1 // D3 D2,
Dd2oo

(in an arbitrary category). For the left diagram D2 can be taken as the colimit object and we can set
κ2 ∶= idD2 , κ1 ∶= Dd . For the right diagram D3 can serve as colimit object and we have κ3 ∶= idD3 ,
κ1 ∶=Dd1 , κ2 ∶=Dd2 .

10Note, that we could apply the universal construction recipe again to the diagram in (14) and so on.
11 . . . where, presumably, components are finite artefacts . . .

26 Van Kampen Colimits

Jump-over components For all indices in I with exactly one incoming and one outgoing edge we can
jump over the corresponding component. As examples, we consider the diagrams

D0
Dd1 // D1

Dd2 // D2 D3 D0
Dd1 //

Dd3oo D1
Dd2 // D2,

(in an arbitrary category). For the left diagram D2 can be taken as the colimit object and we have
κ2 ∶= idD2 , κ1 ∶=Dd2 , κ0 ∶=Dd2 ○Dd1 . For the right diagram the colimit object is obtained by the pushout
of Dd2 ○Dd1 ∶ D0 → D2 and Dd3 ∶ D0 → D3. The missing injections are given by κ1 ∶= κ2 ○Dd2 and
κ0 ∶= κ2 ○Dd2 ○Dd1(= κ3 ○Dd3).

Minimal components We consider diagrams for coequalizer and pushouts, respectively,

D1

Dd **

Dd′
44 D2 D1 D0

Ddoo Dd′ // D2

and the corresponding diagrams according to the universal recipe (14)

D1+D1
[⊆2○Dd ,⊆2○Dd′]

//

[⊆1,⊆1] //
D1+D2 D0+D0

[⊆1○Dd ,⊆2○Dd′]
//

[⊆0,⊆0] //
D0+D1+D2

In case of coequalizer we construct, usually, a quotient of D2 and not of D1+D2 and, in case of pushouts
we construct a quotient of D1+D2 and not of D0+D1+D2. Also in the example in Figure 1 we factorize
the sum D1+D2+D3 and not the sum of all 6 components. In all three cases we build first the coproduct
of all minimal components and construct then a quotient of this restricted coproduct.
Definition 21 (Minimal index) For a finite directed multigraph I we denote by Min(I) the set of all
(local) minimal indices, i.e., of all vertices in I0 without outgoing edges. For a diagram D ∶ I→ SetB we
say that Di is a minimal component if i ∈Min(I).
Since I is finite and has no directed cycles, each index is either minimal or there exists a non-empty finite
sequence of edges to at least one minimal index. This fact will be used several times in the sequel. To
construct the colimit of a diagram with finite I with no directed cycles we need, in practice, only the
minimal components as outlined below.

Branching components The essence in constructing the colimit of a diagram is to converge diverging
branches in the diagram (in a minimal way). In presheaf topoi this can be done by sortwise identifying
certain elements. What elements, however, have to be identified?

In case of coequalizers we have to identify for all sorts X ∈ B and all y ∈D1(X) the two elements
Dd(y) and Dd′(y) in D2(X). These primary identifications induce further identifications when we con-
struct the smallest congruence in D2 comprising all these primary identifications. For pushouts we have
to identify for all X ∈ B and all y ∈ D0(X) the two elements Dd(y) and Dd′(y) seen as elements in
D1(X)+D2(X). In this case, we construct then the smallest congruence in D1+D2 comprising all the
primary identifications.

Now we look at slightly more general diagrams. First, we consider three parallel arrows.

D1

Dd1
%%

Dd2
//

Dd3

::D2

Harald König, Uwe Wolter 27

In this case, we have to identify for all sorts X ∈ B and all y ∈D1(X) the three elements Dd1(y), Dd2(y)
and Dd3(y) in D2(X), and then we construct the smallest congruence in D2 comprising these identifica-
tions. Second, we consider two generalizations of pushouts

DI
Dis

}}

Dib

!!

D1 D13
Dd−13oo

Dd13 // D3

DS DP
Dmoo Dr // DB D12

Dd−12

OO

Dd12 // D2 D23
Dd−23oo

Dd23

OO

A situation, as in the left diagram, appears, for example, if we want to avoid that the instantiation of

a ”parameterized specification” DP
Dr // DB via a ”match” DP

Dm // DS generates two copies of a
specification DI that had been imported as well by the ”body” DB of the parameterized specification as
by the ”actual parameter” DS. The diagram on the right is taken from the example in Figure 1.

In the left diagram we have to identify for all X ∈ B and all y ∈DP(X) the two elements Dm(y) and
Dr(y) seen as elements in DS(X)+DB(X). In addition, we have to identify for all z ∈DI(X) the two
elements Dis(z) and Dib(z), again seen as elements in DS(X)+DB(X).

In the right diagram, we have, analogously, that the elements in D12 force identifications of elements
in D1 and D2, seen as elements in D1 +D2 +D3, the elements D13 force identifications of elements in
D1 and D3, seen as elements in D1+D2+D3, and the elements in D23 force identifications of elements
in D2 and D3, seen as elements in D1+D2+D3.

Generalizing the examples we want to coin the following definition.
Definition 22 (Branching index) For a finite directed multigraph I we denote by Br(I) the set of all
branching indices, i.e., of all indices with, at least, two outgoing edges. For a diagram D ∶ I→ SetB we
say that Di is a branching component if i ∈ Br(I).

A sequence of edges p = (i0
d0→ i1

d1→ . . .
dn−1→ in) in I is called a branch, if i0 ∈ Br(I) and in ∈Min(I).

Note, that Br(I) and Min(I) are disjoint by definition. Thus any branch has at least length 1. Note
further, that branching indices can be connected in I, in contrast to minimal indices.

To illustrate our discussion and definitions we consider a simple toy example.
Example 23 Let I =

1 a // 2
b

��

4 c
//

e
&&5

d
// 6

g
��

h
��

3 7

f

OO

8 9 l // 10

Here we have Min(I) = {3,8,10}, Br(I) = {4,6} and the four branches (4
c→ 5

d→ 6
g→ 8), (4

c→ 5
d→ 6

h→
9

l→ 10), (4
e→ 6

g→ 8), and (4
e→ 6

h→ 9
l→ 10).

The indices 1 and 7 are irrelevant and we can jump over the indices 5 and 9. We can also jump over
the index 2, but since 1 is irrelevant also 2 becomes irrelevant. Be aware that the edges c,d,e constitute
an undirected cycle in I.
Branching indices give rise to special positions in mapping paths:
Definition 24 (Branching Position in Proper Paths) For a pair of subsequent segments

(y j−1,dop,y j),(y j,d′,y j+1)
of a proper mapping path P (hence d /= d′) the position j is called a branching position of P. Consequently
ι j is a branching index of I.

28 Van Kampen Colimits

A specialized construction of colimits Now, we have everything at hand to describe a construction of
colimits in presheaf topoi that specializes the construction outlined in Fact 6. Let I be a finite directed
multigraph with no directed cycles. Then we can construct the colimit of a diagram D ∶ I → SetB as
follows:

1. Construct the coproduct∐i∈Min(I)Di (by sortwise coproducts in Set).

2. For each pair p = (i
d→ . . .→ j), p′ = (i

d′→ . . .→ j′) of branches in I with common source i ∈ Br(I)
and d /= d′, and for each sort X ∈B there is the set

≈p,p′
X ∶= {(⊆ j (Dp(y)),⊆ j′ (Dp′(y))) ∣ y ∈Di(X)}

of pairs (primary identifications) in ∐i∈Min(I)Di. Each pair is represented by a primary mapping

path connecting the pair’s components12. By ≈X we denote the union of all those sets ≈p,p′
X for the

sort X . This gives us a family ≈= (≈X)X∈B of binary relations in∐i∈Min(I)Di.

3. Construct the smallest congruence ≅= (≅X)X∈B in ∐i∈Min(I)Di which comprises ≈= (≈X)X∈B by
enlargement with transitive (i.e. concatenation of primary mapping paths) and reflexive (empty
mapping paths) closure1314.

4. Construct the colimit object as the sortwise quotient (∐i∈Min(I)Di)/ ≅ and get, in such a way, also
the canonical morphisms []≅ ∶ ∐i∈Min(I)Di→ (∐i∈Min(I)Di)/ ≅.

5. The colimiting cocone of diagram D is given by

D
κ⇒(∐

i∈Min(I)
Di)/ ≅ (24)

where κi ∶= []≅○ ⊆i for all minimal indices i ∈ Min(I) and κi ∶= κ j ○Dp for all other indices i ∈
I0 ∖Min(I), where p = (i→ . . .→ j) is an edge sequence from i to j ∈ Min(I). See below for a
detailed explanation. Note, that the definition of κi is independent of the choice of p since we
have, by construction, κ j ○Dp = κ j′ ○Dp′ for all branches p = (i→ . . .→ j), p′ = (i→ . . .→ j′) in I
with a common source.

The main advantage of this construction is that mapping paths are now computed traversing branching
components only. These components, however, are often just tiny ”connectors” as in Fig.1.

Proof of (24): Let ⊆∶ ∐i∈Min(I)Di →∐i∈I0
Di be the embedding morphism. Recall from Fact 6, (2)

that z ≡p z′, if there is a proper mapping path from z to z′. In order to distinguish ordinary mapping
paths in D (according to Def.5) from special paths arising from steps 2 and 3 above, we call the latter
branching mapping paths in this proof.

It is a well-known fact that there is a unique SetB-homomorphism f making the diagram

∐i∈Min(I)Di
[]≅ // //

[]≡○⊆
��

(∐i∈Min(I)Di)/ ≅

f
��

(∐i∈I0
Di)/≡ //

h
// // (∐i∈I0

Di)/≡p

12It can be shown inductively over the path length that each pair can even be represented by a path with exactly one branching
position.

13
≈ is already symmetric by definition and the transitive closure preserves symmetry.

14It is easy to see that compatibility with operation symbols holds.

Harald König, Uwe Wolter 29

commutative, because []≅ is an epimorphism and its kernel is contained in the kernel of []≡○ ⊆ (because
each branching path is a mapping path). The existence of isomorphism h follows from Fact 6. It is easy
see from the path reduction procedure (Lemma 29), that h([y]≡) = [y]≡p for all y. To prove (24), we will
now show that f is bijective.

It is easy to see that f is surjective: Let [z]≡p be an element in the codomain of f , z ∈Di(X) and p be
a (possibly empty) edge sequence in I from i to a minimal index j. Commutativity of the above square
yields for all y ∈D j(X):

f ([y]≅) = [y]≡p (25)

Hence f ([Dp(z)]≅) = [Dp(z)]≡p which is equal to [z]≡p because the edge sequence yields a proper path
from z to Dp(z).

It remains to show injectivity of f . For this, it suffices (by (25)) to show for all z ∈Di(X),z′ ∈Di′(X)
with i, i′ ∈ Min(I): If there is a proper mapping from z to z′ in D, then there is already a branching path
from z to z′. We can assume z /= z′, otherwise there is the empty branching path (cf. construction of
reflexive closure in step 3 above).

Let thus
P = [(z = z0,δ0,z1), . . . ,(zn−1,δn−1,zn = z′)]

be such a proper path. Because I contains no directed cycles and z,z′ are located in minimal components,
we must have n ≥ 2 and δ0 ∈ Iop

1 and δn−1 ∈ I1. Because P is proper, it contains a positive number of
branching positions, cf. Def.24. At each such position, the element z j on the path gives rise to branching
index ι j.

The claim can now be proven by induction over the number t of branching positions: if t = 1, then
P is already a branching path, namely a primary mapping path (step 2). Let t +1 ≥ 2 be the number of
branching positions, j1 the first (smallest) and j2 the second position therein. Thus there is unique k with
j1 < k < j2 and δk−1 ∈ I1, δk ∈ Iop

1 .
There is an edge sequence q in I from vertex ιk to a minimal index i′′. Then the subpath of P from

z0 to zk concatenated with the path Q from zk to Dq(zk) representing q is a primary branching path R (cf.
step 2 above). And the reverse of Q concatenated with the subpath of P from zk to z′ can be made into a
proper mapping path (by Lemma 29) with a number of branching positions ≤ t, which connects Dq(zk)
and z′. Since these two elements are in minimal components Di′′ , Di′ , resp., induction hypotheses yields
a branching path from Dq(zk) to z′. This path appended to R is a branching path from z to z′.15 ⊓⊔

Note, that all the components Di with i ∈ Min(I) not being the target of any branch are not affected
by the quotient construction, i.e. congruence classes [z]≅ are singletons for all z ∈Di(X). In Example 23
this is the case for index 3. Let A f (I) denote the set of all affected minimal indices. We could then be
even more specific and construct the colimit object as

(∐
i∈Min(I)∖A f (I)

Di)+(∐
i∈A f (I)

Di)/ ≅ (26)

6.4 Efficient Checking of the Van Kampen Property

Based on (26) we can conclude, independent of Corollary 20, that a diagram D ∶ I → SetB is VK if
I, in addition of being finite and having no directed cycles, does not have branching indices either.
In this case, A f (I) is empty and the colimit of the diagram is simply given by the coproduct of all

15 The so constructed path is - in general - not proper. But this is no problem here, because we did not claim this property for
branching paths.

30 Van Kampen Colimits

minimal components, thus the VK property of the diagram is ensured by the VK property of coproducts
(extensivity) and pullback composition. In the presence of branching, however, we do not have VK for
free. We have to check one of the conditions in Cor.20 for every single diagram.

The specialized colimit construction (26) suggests another practical relevant possibility to reduce
our effort for checking VK in case I has no directed cycles. In applications that deal with nets of soft-
ware components (e.g. multimodels), there is usually only one type of relation between the components:
Relations either specify sameness of model elements, versions of one model element in evolving envi-
ronments, or elements to be preserved when applying transformation rules [5]. Thus, rarely will it be
the case that there are two or more morphisms in the same direction between two given components. An
even weaker and also reasonable claim for two different relations is that they don’t interfere in common
codomains, thus the following definition is not too restrictive:

Definition 25 (Image-Disjointness) A diagram D ∶ I→ SetB is called image disjoint, if for each pair of
different branches p = (i→ . . .→ j), p′ = (i→ . . .→ j′) in I starting in the same branching index i and all
elements y ∈Di(X), X ∈B we have Dp(y) /=Dp′(y).

Clearly, by Cor.20, one obtains:

Fact 26 If D is not image-disjoint, the colimt D⇒ ∆S does not have the Van Kampen property.

because the two different branches p, p′ and y ∈Di(X) with Dp(y) =Dp′(y) yield two different mapping
paths from y to Dp(y). ⊓⊔

If there are no undirected cycles in I, then we have image disjointness for free, because we always
assume that all components Di are pairwise disjoint. If there are undirected cycles in I, as in the case of
coequalizers, for example, it can happen that j = j′. Thus we have to test, first, for image disjointness
before the ”different paths criterion for paths connecting affected minimal components” below can be
applied. Note, that image disjointness implies that we have Dp(y) /=Dp′(y) for all y ∈Di(X), X ∈ B
not only for branches but for arbitrary pairs of paths p = (i→ . . .→ j), p′ = (i→ . . .→ j′) starting in a
common branching index i ∈ Br(I) but not necessarily ending at a minimal index.

We can now outline a proof for the following theorem:

Theorem 27 (Different Paths Connecting Affected Minimal Components) Let G = SetB and D ∶ I→
G be a diagram with I a finite directed multigraph without directed cycles. Let

D
κ⇒ ∆S

be a colimiting cocone with image-disjoint D. The following are equivalent:

(1) The cocone has the Van Kampen property
(2) ∀X ∈B, i, j ∈ A f (I),z ∈Di(X),z′ ∈D j(X) ∶ There are no two different proper paths from z to z′

(3) ∀X ∈B, i, j ∈ A f (I),z ∈Di(X),z′ ∈D j(X) ∶ There are no two different inner-cycle free proper
paths from z to z′

Thus – according to (24) – it is only necessary for an algorithm to iterate over branching components and
compute paths into potentially affected minimal components. For instance, one has to consider only the
small components D12,D13,D23 in Fig.1. Again the implementation is independent of whether it ignores
inner-cycle free paths or not. It is, however, not guaranteed to find disjoint paths, if VK is violated.
Proof of Theorem 27: Obviously (1)⇒(2) follows from Cor.20 and (2)⇒(3) is trivial. Thus it remains
to show (3) ⇒ (1). For this, assume to the contrary that the Van Kampen property is not satisfied.

Harald König, Uwe Wolter 31

Thus, from (3) in Cor.20 there are two disjoint proper paths connecting some z,z′ ∈ ∐i∈I0
Di. Then the

concatenation of the first and the reversed second path connects z with itself, yielding a new (cyclic) path

P = [(z = z0,δ0,z1), . . . ,(zn−1,δn−1,zn = z)]

The remaining path is non-empty and still proper by disjointness of the given paths. It can be made
inner-cycle free by Lemma 31. Since I has no loops, we have n ≥ 2. Since I has no directed cycles, at
least one of the δi’s in P is in I1 and another one in Iop

1 . W.l.o.g. we can assume δ0 ∈ Iop
1 and δn−1 ∈ I1.

Because P is proper, there are smallest and largest branching positions i ≥ 1 and j ≤ n− 1. We claim
that i /= j: If this would not be the case, then (δi = δ j) /= (δ

op
i−1 = δ

op
j−1). Image disjointness yields z0 =

Dδ
op
0
○ . . .○Dδ

op
i−1

(zi) /=Dδn−1 ○ . . .○Dδ j(z j) = zn, contradicting the assumption z0 = zn. Thus i < j, where
2 ≤ j− i since δi ∈ I1 and δ j−1 ∈ Iop

1 .
We consider the unique i < k < j with δx ∈ I1 for all i ≤ x ≤ k−1 and δk ∈ Iop

1 . There are edge sequences
q0 and qk from ι0 and ιk to minimal indices i0 and ik, resp. Since ιi is a branching index, by construction,
we do have i0, ik ∈ A f (I). Let Q0,Qk denote the mapping paths that represent the assignments z0 ↦
Dq0(z0) and zk ↦Dqk(zk).

We can now construct two mapping paths connecting the element Dqk(zk) with the distinct (by
image-disjointness at branching index ιi) element Dq0(z0): The first mapping path R1 is obtained by
composing the reverse of Qk with the reverse of the subpath, connecting z0 with zk, and then with Q0.
The second mapping path R2 is obtained by composing the reverse of Qk with the subpath connecting zk
with zn = z0, and then with Q0.

It remains to show that R1 and R2 are inner-cycle free, since then we would have created a contradic-
tion to premise (3). Obviously R1 is inner-cycle free: Since P was inner-cycle free, it is only possible to
have y = y′ at two different positions of R1, if (w.l.o.g.) y is on Q0. y′ can not be on Q0 and not on the
subpath from z0 to zi, because this would yield a directed cycle in I. But y′ can also not reside on the
subpath from zi to Dqk(zk) because this would violate image-disjointness at branching position i.

R2 can be reduced to an inner-cycle free path by Lemma 31. It is now important to verify that this
reduction is not equal to R1: A reduction of R2 can only coincide with R1, if their respective parts on P
coincide. Because P was proper, this is only possible if the parts of P are totally erased during reduction.
This, however, is not possible, because R1 was not reduced. This, finally, yields two different proper and
inner-cycle free paths as desired. ⊓⊔

The absence of directed cycles and the presence of image-disjointness are reasonable requirements
for many practical use-cases. But circumstances can often be further narrowed. In the rest of this section
we consider some other possibly satisfied properties and corresponding alternative checking methods
which can simplify VK verification.

Monomorphisms: In some practical cases, the morphisms of D specify relations between components
Di and D j such that an element in Di is related to at most one element of D j. In this case all the
morphisms Dd , with d an edge in I, are monomorphisms. In such a diagram any mapping path P is
completely determined by y0 (or yn) and the corresponding sequence [δ0, ...,δn−1] of edges and opposed
edges in I. Due to Theorem 27, the diagram may be not VK only if there are two different sequences of
edges and opposed edges between two distinct affected indices in I. As long as there are no undirected
cycles in I this can not happen, thus the diagram is VK, if there are no undirected cycles in I.

If there are undirected cycles in I it is surely not enough to require image-disjointness as defined in
Def.25, see also Fig.1. Instead, we can ensure VK by the stronger requirement that all the undirected

32 Van Kampen Colimits

start // Directed
cycles in I?

yes
��

no // Branching
in I?

no

��

yes // D image-
disjoint?

yes //

no

Only monic’s
in D?

yes
��

no

||

One Di(X)
on the cycle

finite?
yes

%%

no

��

All undirected
cycles

broken in I?

yes

yy

no

��
Apply
Cor.20 not VK VK Apply

Thm.27

Figure 4: Decision diagram

cycles in I are broken in D: An undirected cycle of edges in I is broken in D if for one of the situations

. . .
dn−1Ð→⋯ d0Ð→

d′0←Ð⋯
d′m−1←Ð . . .

in the edge sequence with 1 ≤ n,m the morphisms Dd0 ○ . . .○Ddn−1 and Dd′0 ○ . . .○Dd′m−1
are image disjoint.

In the example in Figure 1 this condition is not satisfied. In the example ”parametrized specifica-
tion with import”, however, it is quite natural that Dib and Dr are image disjoint since the ”imported
component” DI is not part of the ”parameter component” Dp.

6.5 Decision Diagram and VK Verification Algorithm

In practical cases, as outlined e.g. in Sect.3.3, colimit computation is obligatory. Verification of the Van
Kampen property must follow, if we want to verify compositionality. It would thus be a nice side effect to
have a possibility to check VK simultanously with colimit computation such that there is no increase in
time complexity! We will now shortly discuss, that with the results gained so far, this is indeed possible.

For this, let’s summarize the outcome of the previous sections as decision algorithm, see Fig.4.
With the exception of rare cases in which there is a directed cycle in I whose component carrier sets

are all infinite, it is possible to easily reach an early decision, if either there are directed cycles in I or if
there is no branching in I. These analysis is restricted to the small graph I. In the presence of branching,
the natural next step is to check violation of image-disjointness in D to immediately deduce violation of
VK (Fact 26). Image-disjointness can immediately be confirmed, if all branches diverge. Otherwise, the
mapping behavior along branches has to be investigated, which may be more costly.

Hence the combined algorithm for colimit computation and Van Kampen verification comprises the
following steps:

1. Preprocessing of the data shows whether we are on a decision route in Fig.4 on which Thm.27 will
be applied. In this case there are no directed cycles in I and D is image-disjoint.

2. vk ∶= true;

3. ≅X ∶= {(z,z) ∣ z ∈D j(X), j ∈Min(I)} for all X ∈B;

4. For each branching component Di, each X ∈B and for each y ∈Di(X), do:

Harald König, Uwe Wolter 33

(a) Add images (z,z′) to ≅X according to primary identifications in step 2 in the specialized
colimit computation.

(b) Keep ≅X transitive by adding all arising transitive pairs from the last enhancement.
(c) Whenever in the two previous steps a pair (z,z′) is added for the second time, vk ∶= f alse (cf.

Theorem 27).

5. Compute colimit cocone κ as in (24) using the family ≅= (≅X)X∈B.

6. Return (κ,vk)
While, in such a way, VK verification can be embedded into the obligatory colimit computation, the main
disadvantage is the possibly costly preprocessing, especially the early image-disjointness check. In the
next section, we describe an alternative and slightly deviating approach, how to avoid this check. The
drawback, however, will be, that this method can not directly be embedded into the colimit computation.

6.6 Checking for Cyclic Mapping Paths only

All conditions in Corollary 20 are equivalent to

∀z ∶ There is no non-empty proper mapping path connecting z with itself, (27)

because on the one hand any cyclic proper non-empty mapping path from z to itself is accompanied by
the empty path from z to itself. On the other hand, if z /= z′, the existence of two disjoint proper mapping
paths in D connecting z and z′ provides a non-empty proper mapping path connecting z with itself since
the first path can be composed with the reversed second path. This composition becomes proper again
since the paths are disjoint.

If I has no directed cycles, we will show now that it is even enough to check only the branching com-
ponents for cyclic mapping paths. Note, that this criterion generalizes smoothly our original condition in
Theorem 10 for VK pushouts. In the same way as Theorem 27, this criterion is also useful in practice,
because, again, one can reduce analysis to presumably small branching components.

We consider a non-empty mapping path P = [(y0,δ0,y1),(y1,δ1,y2), . . . ,(yn−1,δn−1,yn)] with y0 = yn.
If ι0 ∉ Br(I) we can not have δn−1 ∈ Iop

1 and δ0 ∈ I1 at the same time. Since there is no loop in I we have
n≥ 2. Moreover, since there are no directed cycles in I at least one of the δi’s must be in I1 and at least one
in Iop

1 . In such a way, there must be at least one branching position j with 0 < j < n, i.e. ι j is a branching
index. Thus the cycle can be transformed into a non-empty cyclic proper mapping path connecting y j

in Dι j(X) with itself where ι j ∈ Br(I). This shows that we need to check condition (27) indeed only for
branching indices. Note, that we have, in such a way, another argument, now based on Corollary 20, that
we have VK for free if there is no branching in our finite I without directed cycles!

Due to inner-cycle reduction (Lemma 31) it would be even enough to check the existence of cyclic
non-empty inner-cycle free and proper mapping paths for elements in branching components. This yields
Theorem 28 (Non-Empty Cyclic Paths) Let G = SetB be a presheaf topos and D ∶ I→G be a diagram
with I a finite directed multigraph without directed cycles. Let

D
κ⇒ ∆S

be a colimiting cocone. The following are equivalent:

(1) The cocone is VK
(2) ∀X ∈B, i ∈ Br(I),z ∈Di(X) ∶ There is no non-empty proper mapping path from z to itself
(2) ∀X ∈B, i ∈ Br(I),z ∈Di(X) ∶ There is no non-empty inner-cycle free and proper mapping

path from z to itself ⊓⊔

34 Van Kampen Colimits

In Fig.4 it is now possible to omit the check for image-disjointness and carry out the algorithm according
to Theorem 28 after having checked for directed cyles and branching in I. In Fig.1, it is easy to see that
the cyclic path

(Sort,dop
−13,S/I),(S/I,d13,Int f .),(Int f .,dop

23 ,T /I),(T /I,d−23,Type),(Type,dop
12 ,S/T),(S/T,d−12,Sort)

is the witness for VK violation. Not surprisingly, it is the concatenation of the two indicating paths
already given in Sect.3.3.

The methodology of the present section, however, is not directly combinable with colimit compu-
tation, since the algorithm of Sect.6.5 collects pairs in minimal components only, while cyclic path
construction takes place in arbitrary components.

7 Conclusion

Our main interest as theoreticians is to find nice general results. Thus we have a tendency to abstract
away problematic features and aspects and to concentrate on simplified structures and problems. In
addition, our focus may be rather guided by inner-theoretic interests than by practical problems.

Practitioners are, in contrast, often confronted with complex problems and structures. Moreover, the
practical problems have to be solved even if no general solutions are available. Even if (the theoreticians
say that) there is no general solution there may be still a satisfactory solution for the practical problem in
question.

In general, arbitrary diagrams in arbitrary categories are not VK. Even if we restrict to presheaf topoi,
most of the diagrams are not VK. In the paper we presented and proved a feasible general necessary and
sufficient condition to check if a diagram in a presheaf topos is VK or not. Based on this general result,
we developed general practical criteria to check VK for a spectrum of different special kinds of diagrams.

The definition of adhesiveness guarantees VK for pushouts, if one morphism in the span is monic,
but there seems to be no natural and general way to generalize adhesiveness to arbitrary diagrams. A first
attempt to define such a concept for a diagram D ∶ I→ SetB may be that for any branching index i ∈Br(I)
there is, at most, one branch p = (i→⋯→ j) such that Dp is not monic. This is, however, by far not

enough: For the diagram D2
Dd1← D0

Dd2→ D3
Dd3← D1

Dd4→ D4 we do have VK if (Dd1 and Dd3) or (Dd2 and
Dd4) are monic. In case, Dd2 , Dd3 monic and Dd1 , Dd4 not monic, however, we may not have VK. In this
case, we can force VK by requiring that Dd2 and Dd3 are image disjoint. Otherwise, we have to check
one of our criteria. In other examples, e.g. ”parametrized specification with import”, we will still have
VK if we allow Dis and (either Dm or Dr) to be not monic as long as Dib and Dr are image disjoint. As
the above example shows, even the absence of undirected cycles is not of much help to achieve VK. It is
necessary to find appropriate ”breaking requirements” depending on the class of graph I.

In practice, however, it may be even not necessary that a given diagram (of software models) is
VK, i.e., that indeed all instances of the diagram have to be amalgamable. Or, practitioners may insist
on things like ”multiple inheritance” or redundancy, as in the example in Figure 1 and thus take into
account to loose overall amalgamability. They may say that they are clever enough to avoid the ”twisting
anomalies”, the theoreticians are concerned about, and to ensure that all the appearing instances of the
diagram of models are amalgamable. It is maybe worth to underline that all the instances of a diagram
that we get by decomposing instances of the compound colimit model, are amalgamable. Also the
instances we get from a given ”indexed semantics” via a corresponding variant of the Grothendieck
construction [29] are amalgamable.

Harald König, Uwe Wolter 35

The natural next step, to meet more practical challenges, will be to look for feasible conditions that
a given instance of a diagram is amalgamable (even if the diagram is not VK). We want to tell the
practitioners in what sense they have to be careful and clever. The essential heuristics is that ”semantics
should be handled and controlled by syntax”. We may allow cyclic paths in diagrams of models but then
any cyclic path in the diagram of instances has to be the exact copy of a cyclic path in the diagram of
models.

Following these heuristics, we have presented in [30] a general condition for amalgamability of
instances of pushout diagrams in presheafs. There seem to be no principal problems to transform this
condition into an amalgamability condition for instances of arbitrary colimits in presheaf topoi along the
argumentations developed in the present paper. It may only be technically involved and time consuming.

The ultimate goal, however, is to find a categorical counterpart for the different paths criterion Cor.20,
which states a necessary and sufficient condition for the Van Kampen property in more general categories.
Is such a condition significantly different from the bilimit condition mentioned in the introduction and
the universal property formulated in [12]?

8 Appendix: Reduction Techniques

Lemma 29 (Path Reduction) Given a diagram D ∶ I→G in G = SetB, any mapping path P of sort X ∈B
connecting y0 and yn can be reduced to a proper mapping path connecting y0 and yn.

Proof: Since a path may contain different cycles we have to prove by induction over the length of paths.
Basic cases: All paths of length 0 or 1 are proper.
Induction Step: Assume the path is not proper, i.e., we have especially n ≥ 2. We first choose the minimal
0 ≤ i < n−1 such that there is an i < j ≤ n−1 with (yi,δi,yi+1) =w (y j,δ j,y j+1). And second, we choose
the maximal of those j’s for the chosen minimal i.
Case 1: (yi,δi,yi+1) = (y j,δ j,y j+1): The reduced mapping path is

[(y0,δ0,y1), ...,(yi,δi,yi+1),(y j+1,δ j+1,y j+2), . . . ,(yn−1,δn−1,yn)].

It still connects y0 with yn. This also holds in the exceptional case j = n−1, because then the last segment
in the sequence is (yi,δi,yi+1) in which yi+1 = y j+1 = yn.
Case 2: (yi,δi,yi+1) = (y j+1,δ

op
j ,y j). The path

[(y0,δ0,y1), ...,(yi−1,δi−1,yi),(y j+1,δ j+1,y j+2), . . . ,(yn−1,δn−1,yn)] (28)

connects y0 with yn. This also holds in the exceptional cases i = 0 (then the first part is empty and
y j+1 = yi = y0) and j = n−1 (then in the path in (28) the second part is already empty and yn = y j+1 = yi

16).
In both cases cycles occur in the part starting at index j+1 only (by the choice of i). Since the length of
this part is n− j−1 < n, application of induction hypotheses (reduction of the second part) yields a proper
path. ⊓⊔

Lemma 30 (Enforcing Disjointness) Given a diagram D ∶ I→ G in G = SetB and X ∈ B. Let z1,z′1 ∈
∐i∈I0

Di(X) and P and Q be two different proper mapping paths of sort X in D connecting z1 and z′1,
resp. Then there are z2,z′2 ∈ ∐i∈I0

Di(X) and two disjoint proper paths both connecting z2 and z′2.

16 i = 0 and j = n−1 means that both parts and hence the whole path in the reduction is empty. Then y0 is also connected
with yn, because yn = y j+1 = yi = y0, cf. Def.5.

36 Van Kampen Colimits

Proof:: We can assume that P1 and P2 are non-empty. Otherwise they are disjoint and the statement holds
with z2 = z′2 = z1. Let P = [SP

0 , . . . ,S
P
n−1] and Q = [SQ

0 , . . . ,S
Q
m−1]. We can assume that SP

0 and SQ
0 are already

different (not equal according to Def.5). Otherwise we shorten both paths by cutting off leading identical
segments up to a segment starting at some z2.

Let then i ≥ 0 be the smallest index such that there is (a smallest) j ≥ 1 with SP
i =w SQ

j . Thus the paths

P′ = [SP
0 , . . . ,S

P
i] and Q′ = [SQ

0 , . . . ,S
Q
j−1]

are disjoint and proper. Let SP
i = (y,δ ,y′).

Case 1: SP
i = SQ

j . Then SQ
j−1 has the form (, ,y). If i > 0 then SP

i−1 is also of this form, thus

[SP
0 , . . . ,S

P
i−1] and [SQ

0 , . . . ,S
Q
j−1] are disjoint and connect z2 with z′2 ∶= y. If i = 0, then P and hence also Q

start at y, thus [SQ
0 , . . . ,S

Q
j−1] is cyclic, hence disjoint from [] (i.e. we take z′2 = z2 = y).

Case 2: SP
i /= SQ

j , i.e. SQ
j = (y′,δ op,y), then SQ

j−1 is (, ,y′) and we take P′ and Q′ (i.e. z′2 = y′). ⊓⊔
The following lemma was needed in order to get rid of properness of mappping paths in the main

theorem.

Lemma 31 (Inner-Cycle Deletion) Any non-empty proper mapping path, connecting y0 and yn, can be
reduced to a non-empty inner-cycle free proper mapping path connecting y0 and yn.

Proof: We use the same technique as in the proof of Lemma 30: If there is an inner cycle we choose the
smallest index 0 ≤ i such that there is an i < j ≤ n with j− i ≤ n−1 and yi = y j. Second, we choose the
maximal of those j’s for the chosen minimal i and reduce accordingly. ⊓⊔

Lemma 32 (Domain Cycle Reduction) Given a span D1 D0
h1oo h2 // D2 in G = SetB any domain

cycle [x0,x1, . . . ,x2k+1] of sort X ∈B can be reduced to a proper domain cycle.

Proof: Since a domain cycle may contain different smaller domain cycles we have to prove by induction
over the length of domain cycles.
Basic cases: Due to condition (1) in Definition 9 all domain cycles with k = 0, i.e., of length 2, are proper.
Induction Step: Assume that the domain cycle is not proper, i.e., we have especially k ≥ 1. We choose
first the minimal 0 ≤ i < 2k+1 such that there is an i < j ≤ 2k+1 with xi = x j. And second, we choose
the maximal of those j’s for the chosen minimal i. Due to condition (1) in Definition 9 we can not have
j− i = 1 and we can not have i = 0 and j = 2k+1 since x2k+1 /= x2k+2 = x0. In such a way, we get for the
difference 2 ≤ (j− i) ≤ 2k.
Case 1 (j− i) = 2m with 1 ≤m ≤ k: In this case we have xi = x j /= x j+1 and it can be easily checked that the
sequence [x0, . . . ,xi,x j+1, . . . ,x2k+1] also satisfies conditions (2) and (3) in Definition 9. In such a way,
we obtain a reduced domain cycle of length (2k+2) > (2k+2)−(i− j) = (2k+2)−2m = 2(k−m)+2 ≥ 2
that is proper due to the choice of i and j.
Case 2 (j − i) = 2m+ 1 with 1 ≤ m < k: If 0 < i we have xi−1 /= x j+1 due to the choice of i and it can
be easily checked that the sequence [x0, . . . ,xi−1,x j+1, . . . ,x2k+1] also satisfies conditions (2) and (3) in
Definition 9. In such a way, we obtain a reduced domain cycle of length (2k+2) > (2k+2)−((i− j)+1) =
(2k+2)−(2m+2) = 2(k−m) ≥ 2 that is proper due to the choice of i and j.
If i = 0 we obtain the reduced domain cycle [x j+1, . . . ,x2k+1] of length (2k+2) > (2k+1)− j = (2k+1)−
(2m+1) = 2(k−m) ≥ 2. This reduced domain cycle may be not proper and we have to apply the induction
hypothesis. Note, that x0 is no longer in the reduced domain cycle. ⊓⊔

We draw attention to the fact that in Case 2, i = 0 the reduction of the corresponding weak mapping
path, according to Lemma 30 does not produce a domain cycle.

Harald König, Uwe Wolter 37

References

[1] M. Barr & C. Wells (1990): Category Theory for Computing Sciences. Prentice Hall.

[2] R. Brown & G. Janelidze (1997): Van Kampen Theorems for Categories of Covering Morphisms in Lextensive
Categories. J. Pure Appl. Alegbra 119, pp. 255 – 263.

[3] M. Bunge & S. Lack (2003): van Kampen Theorems for Topoi. Advances in Mathematics 179, pp. 291 –
317.

[4] Z. Diskin & U. Wolter (2008): A Diagrammatic Logic for Object-Oriented Visual Modeling. Electr. Notes
Theor. Comput. Sci. 203(6), pp. 19–41, doi:10.1016/j.entcs.2008.10.041.

[5] H. Ehrig, K. Ehrig, U. Prange & G. Taentzer (2006): Fundamentals of Algebraic Graph Transformations.
Springer.

[6] Hartmut Ehrig, M. Grosse-Rhode & U. Wolter (1998): Applications of Category Theory to the Area of
Algebraic Specification in Computer Science. Appl. Categorical Structures 6, pp. 1–35.

[7] Jose Luiz Fiadeiro (2005): Categories for Software Engineering. Springer.

[8] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein & M. Goedicke (1992): Viewpoints: A Framework for
Integrating Multiple Perspectives in System Development. International Journal of Software Engineering and
Knowledge Engineering 2.

[9] M. Fowler & K. Scott (1999): UML distilled. Addison-Wesley.

[10] Peter Freyd (1972): Aspects of Topoi. Bull. Austral. Math. Soc. 7, pp. 1–76,
doi:10.1017/S0004972700044828.

[11] Robert Goldblatt (1984): Topoi: The Categorial Analysis of Logic. Dover Publications.

[12] T. Heindel & P. Sobocinski (2009): Van Kampen Colimits as Bicolimits in Span. In A. Kurz, M. Lenisa
& A. Tarlecki, editors: Algebra and Coalgebra in Computer Science, Lecture Notes in Comput. Sci. 5728,
Springer Berlin / Heidelberg, pp. 335–349, doi:10.1007/978-3-642-03741-2 23.

[13] Wolfram Kahl (2011): Collagories: Relation-algebraic reasoning for gluing constructions. J. Log. Algebr.
Program. 80(6), pp. 297–338, doi:10.1016/j.jlap.2011.04.006. Available at http://dx.doi.org/10.1016/
j.jlap.2011.04.006.

[14] E. R. van Kampen (1933): On the Connection between the Fundamental Groups of some Related Spaces.
American Journal of Mathematics 55, pp. 261 – 267.

[15] Harald König, Michael Löwe, Christoph Schulz & Uwe Wolter (2014): Van Kampen Squares for Graph
Transformation. In: Graph Transformation - 7th International Conference, ICGT 2014, Held as Part of STAF
2014, York, UK, July 22-24, 2014. Proceedings, pp. 222–236, doi:10.1007/978-3-319-09108-2 15. Available
at http://dx.doi.org/10.1007/978-3-319-09108-2_15.

[16] S. Lack & P. Sobociński (2004): Adhesive Categories. In: Foundations of Software Science and Computation
Structures (FoSSaCS ’04), 2987, Springer, pp. 273–288, doi:10.1007/978-3-540-24727-2 20.

[17] S. Lack & P. Sobociński (2006): Toposes are Adhesive. Lecture Notes in Comput. Sci. 4178, pp. 184–198,
doi:10.1007/11841883 14.

[18] Michael Löwe (2010): Van-Kampen Pushouts for Sets and Graphs. Technical Report, University of Applied
Sciences, FHDW Hannover.

[19] Moerdijk I. Mac Lane, S. (1992): Sheaves in Geometry and Logic A first introduction to topos theory.
Springer.

[20] Saunders Mac Lane (1998): Categories for the Working Mathematician, Second edition. Springer.

[21] M. Makkai (1997): Generalized sketches as a framework for completeness theorems. J. Pure Appl. Algebra
115, pp. 49–79, 179–212, 214–274.

[22] J.P. May (1999): A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics, The University
of Chicago Press. Available at http://dx.doi.org/10.1007/978-3-642-17336-3.

http://dx.doi.org/10.1016/j.entcs.2008.10.041
http://dx.doi.org/10.1017/S0004972700044828
http://dx.doi.org/10.1007/978-3-642-03741-2_23
http://dx.doi.org/10.1016/j.jlap.2011.04.006
http://dx.doi.org/10.1016/j.jlap.2011.04.006
http://dx.doi.org/10.1016/j.jlap.2011.04.006
http://dx.doi.org/10.1007/978-3-319-09108-2$_$15
http://dx.doi.org/10.1007/978-3-319-09108-2_15
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/11841883_14
http://dx.doi.org/10.1007/978-3-642-17336-3

38 Van Kampen Colimits

[23] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook & M. Chechik (2007): Consistency Checking of Con-
ceptual Models via Model Merging. In: RE, pp. 221–230.

[24] Mehrdad Sabetzadeh, Shiva Nejati, Sotirios Liaskos, Steve M. Easterbrook & Marsha Chechik (2007): Con-
sistency Checking of Conceptual Models via Model Merging. In: RE, IEEE, pp. 221–230. Available at
http://dx.doi.org/10.1109/RE.2007.18.

[25] Donald Sannella & Andrzej Tarlecki (2012): Foundations of Algebraic Specification and Formal Software
Development. Monographs in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/978-
3-642-17336-3. Available at http://dx.doi.org/10.1007/978-3-642-17336-3.

[26] Herbert Seifert (1931): Konstruktion dreidimensionaler geschlossener Räume. Dissertation, University of
Dresden .

[27] P. Soboczińsky (2004): Deriving Process Congruences from Reaction Rules. Technical Report DS-04-6,
BRICS Dissertation Series.

[28] Angelo Vistoli (2005): Notes on Grothendieck topologies, fibered categories and descent theory.
arXiv:math/0412512V2 .

[29] U. Wolter & Z. Diskin (2007): From Indexed to Fibred Semantics – The Generalized Sketch File –. Reports
in Informatics 361, Dep. of Informatics, University of Bergen.

[30] U. Wolter & H. König (2015): Fibred Amalgamation, Descent Data, and Van Kampen Squares in Topoi.
Applied Categorical Structures 23(3), pp. 447 – 486, doi:10.1007/s10485-013-9339-2.

http://dx.doi.org/10.1109/RE.2007.18
http://dx.doi.org/10.1007/978-3-642-17336-3
http://dx.doi.org/10.1007/978-3-642-17336-3
http://dx.doi.org/10.1007/978-3-642-17336-3
http://dx.doi.org/10.1007/s10485-013-9339-2

ISSN 1863-7043

		2016-11-15T08:47:31+0100
	fhdwcsh

