
Consistency Checking of Interrelated Models,
Long Version

Harald König, Zinovy Diskin

Bericht Nr.: 02017/01

Impressum

Forschungsberichte der FHDW Hannover – Veröffentlichungen aus dem Bereich Forschung und
Entwicklung der FHDW Hannover.

Herausgeber: Die Professoren der FHDW Hannover
Fachhochschule für die Wirtschaft Hannover
Freundallee 15
30173 Hannover

Kontakt: techrep@fhdw.de

ISSN 1863-7043

Consistency Checking of Interrelated Models, Long
Version ?

Harald König1 | Zinovy Diskin2,3

1 University of Applied Sciences FHDW Hannover, Germany
2 Generative Software Development Lab, University of Waterloo, Canada

harald.koenig@fhdw.de
zdiskin@gsd.uwaterloo.ca

Abstract. Software design requires deployment of a collection of interdepen-
dent models conforming to different metamodels. These so-called multi-models
present different views of interest and may be consistent only if they simultane-
ously satisfy a set of global constraints.
A straightforward approach to global consistency checking is to run constraint
validations on the model union (merge). These validations are carried out by re-
duction to a small view (localization) of the model merge. It turns out that this
”merge-prior-to-localization”-approach is not efficient because of considerable
matching and merging workload. We propose to perform early localization in
order to reduce the data space which is subject to the search for commonalities.
The algorithm is based on a new method for formally specifying the inter-relation
of an arbitrary number of heterogeneously typed models. Behind the scenery we
utilize valuable theorems of category theory.

1 Introduction

Modeling a complex system normally results in a multi-model, i.e. a set of heterogenous
models each one conforming to its own metamodel. A fundamental fact about multi-
modeling is that the merge of legal models can result in a model violating the global
constraints declared in the integrated metamodel. For example, consider a metamodel
M1 in which car insurance contracts possess an attribute ’contractType’ (with values
’standard’, ’extended’), and a metamodel M2, in which class ’Policy’ possesses a prop-
erty ’traffic telematics enabled’. Suppose that – despite their different names – concepts
’Contract’ and ’Policy’ denote the same business concept. Then the domain may be
subject to the constraint that only extended contracts can be controlled via traffic telem-
atics. This global constraint cannot be declared in either of the metamodels (the first one
knows nothing about telematics, the second one does not know about contract types),
yet checking its validity for a multi-model (τ1, τ2) with τ1,2 being legal instances of M1,2
is important. Following [7], we call such requirements inter-metamodel constraints.

The interaction of software models due to the fact that they may (partially) describe
identical concepts requires understanding and formalizing matches (i.e. sameness decla-
rations) between these artefacts (e.g. sameness of classes ’Contract’ in M1 and ’Policy’

? This work is partly supported by Høgskolen i Bergen and FHDW Hannover

2 Harald König | Zinovy Diskin

in M2). Moreover, checking of a single constraint on the entire multi-model requires
localization of the constraint’s affected part. This localization has to be carried out on
the formally defined merge of the model components with simultaneous consideration
of all sameness declarations.

In [11] the interplay of these three operations on model collections was investigated:

– Matching has a multi-model with unrelated model components as input and outputs
this collection together with all detected sameness relations.

– Merge has a multi-model with already related components as input and outputs a
single model, namely its union modulo the above mentioned sameness declarations.

– Localization has a constraint declaration on a metamodel as input and outputs the
affected fragment of this metamodel.

A straightforward approach to global consistency checking would require to match and
merge the multi-metamodel (yielding contracts/policies with type and telematics infor-
mation in the above example) and adding, perhaps, new global constraints to this merge
(’only extended contracts can be controlled via traffic telematics’). [19] describes how
to check consistency of component models τ1/2 against these global constraints: One
matches and merges component models τ1/2 in the same way and then check the model
merge against the constraints over the metamodel merge with the help of localization.
In fact, this specification can be regarded as a definition of global consistency of a mul-
timodel. However, using this definition algorithmically as a specification of a workflow
for global consistency checking would be impractical because of (a) partly manual,
hence costly model matching needed to specify the overlaps, and (b) the necessity to
build big and unfeasible merges of metamodels and models.

A more efficient approach is early localization: In [11] it was proposed to localize
first and perform matching and merging afterwards. Not only does this significantly
reduce matching and merging workload, it also enables better tailored and stepwise
model repairing e.g. in model co-evolution scenarios. However, [11] only covers the
case of two model components, and the formalization of model matching was carried
out with the help of auxiliary model τ0, in which pairs of matched entities (e.g. contract
instance with id = 42 in τ1 equals policy instance with id = 42 in τ2)) were defined.

In the present paper, we keep a promise of [11]: We implement the announced gen-
eralization of early localization for the case of an arbitrary number of metamodels. For
this it is not enough to maintain pairs of common concepts in τ0. Instead it would be
necessary to enable binary, ternary and higher-order relations which may lead to a rapid
increase of the number of auxiliary structures. Thus the first challenge is to find a more
efficient method to specify these complex inter-relations. The second challenge is to
distribute semi-automatic matching activities efficiently between consecutive automatic
localization and merging, such that corresponding workload is minimized.

In this context, the present paper makes two essential contributions: (1) The gener-
alization of early localization to an arbitrary number of metamodels by extending the
above mentioned localization operation to heterogeneous input and (2) an improved
methodology to relate n models in one common and small auxiliary model.

We introduce a running example in Sect.2 which illustrates all subsequent consid-
erations. In Sect. 3 the basic and fundamental formalization of digrammatic constraints
is explained in detail. We follow the original contributions in the literature ([5] and

Consistency of Interrelated Models 3

subsequent). The introduced constraint checking formalization is transferred to Multi-
Models (which are explained in Sect.4) in Sect.5, where the original global approach
is compared with the new local algorithm. A short conclusion completes the present
paper.

The presented theory is the conceptual basis for a running project at FHDW Han-
nover (’Integrationsprojekt’, HFW414) in the year 2017.

2 Running Example

In this section we introduce the main example which serves as illustration for all con-
structions we perform and facts we declare: Certain authorities are interested in social
clustering of inhabitants of a city or a country or even how people around the globe flock
together. Social networks provide the chance to observe, measure and monitor this clus-
tering. We consider the UML domain models M1 and M2 of two social networks sn1
and sn2 as depicted in Fig.1.

Member
Manager

Individual

members

Address

/addrListe-mails

Phone

phoneNr 0..1

context Individual inv:
self.addresses->size() > 0
or
self.phoneNr <> null

M1

context MemberManager
::addrList:List

derive:
self.members->collect(e-mails)

LoginList

Person Address

loginsidentifies

Phone

private

0..1
context Person inv:
self.private <> null
or
self.commercial <> null

1

commercial

0..1

M2

1

Fig. 1: Domain Models M1 and M2 of social networks sn1 and sn2

M1 specifies that a member manager object maintains all members of sn1, the col-
lection of all their e-mail-addresses being derivable by the manager object. Each indi-
vidual can provide a phone number. If there is no phone number, at least one e-mail
has to be provided. M2 specifies maintenance of e-mail-addresses that serve as login
for network sn2. Thus, each e-mail-address identifies a person of the network. These
persons have to provide a private or a commercial phone number.

Note that we do not provide multiplicities at each association end. If we do not,
multiplicity defaults to 0..∗.3 Constraints are given in OCL syntax, e.g. the fact that
’addrList’ is derived, the derivation logic being specified by the first constraint in M1.

3 This is in contrast to UML’s default setting, which is 1, but for the forthcoming considerations
it is more convenient to deviate from UML standard.

4 Harald König | Zinovy Diskin

Suppose that for several authorities it has always been important to monitor the
amount of e-mail-communication from sn1 to sn2: One intelligence apparatus has stored
all recorded e-mails according to the domain model M3, but there is also another secret
service, who stored all e-mail-contacts between social networks due to domain model
M4, see Fig.2.

E-Mail

M3

Address
sender

1

receivers

Contact

Social
Network

from

1

to

M4

1

Fig. 2: Domain Models M3 and M4 of two intelligence agencies

The two intelligence agencies decide to collaborate in order to consolidate their
knowledge. It is a goal to find out whether their collective data is consistent, e.g. they
must ask whether the number of tracked contacts from sn1 to sn2 (recorded in the second
agency) equals the number of e-mails with sender an individual of sn1 and one of the
receivers being a person in sn2 (recorded in the first agency). Assume our two focused
social networks appear as two objects sn1 and sn2 of type ’Social Network’ in instances
of M4. Then this inter-model constraint can formally be written as

|{c ∈ Contact | c. f rom = sn1 ∧ c.to = sn2}|

= |{e ∈ E − Mail | e.sender ∈ sn1.addrList ∧ e.receivers ∩ sn2.logins , ∅}|

assuming appropriate relations between all 4 models: It is for instance reasonable to
identify objects of type ’Social Network’ (e.g. sn1/2) in M4 with managing objects of
all members and all logins, resp. in models M1/2.

In the next sections we explain, how to code models as graphs, how to impose
constraints on these graphs, and how constraint checking is performed in detail. More-
over, we will explicate model interrelations specifying sameness of overall concepts
and how this formally triggers model union (i.e. merge). Finally, we elaborate on effi-
cient constraint checking on multi-models. All aspects will formally be explained and
exemplified by means of the above example.

3 Diagrammatic Constraints

(Meta-)Models are usually specified by UML class diagrams. The compact syntax of
the latter hides many details that need to be explicated and formalized to allow the
forthcoming machinery to work. In this section, we show how it can be done in the
formal framework of typed graphs (e.g. [8], Sect. 3.1) and diagrammatic constraints.

Consistency of Interrelated Models 5

To be self-contained, the formalisms for diagrammatic constraints, promoted as the
Diagram Predicate Framework, DPF [17,16], is presented in Sect. 3.2. Finally, Sect.
3.3 prepares the announced improved way of relating n models.

3.1 Typed Graphs

A (directed multi-)graph (or just graph) G = (V, E, s, t) consists of a set V of vertices
(or nodes), a set E of edges, and two functions s : E → V , t : E → V that assign to
each edge its source and target. Writing x ∈ G means that x is a node or an edge of G.
We depict graph vertices by ellipses (or circles) and edges by arrows from their source
to their target vertex, cf. right part of Fig.3. A (graph) morphism f : G = (V, E, s, t) →
G′ = (V ′, E′, s′, t′) is a pair (fV , fE) of functions fV : V → V ′ and fE : E → E′ which
preserve the incidence between vertices and edges, i.e. ∀e ∈ E : s′(fE(e)) = fV (s(e))
and t′(fE(e)) = fV (t(e)).

A graph morphism f : G → G′ is an isomorphism, if there is a graph morphism
g : G′ → G such that g ◦ f = idG and f ◦ g = idG′ , the identical maps on G, G′, resp.4.

A graph H′ is a subgraph of G′, written H′ ⊆ G′, if H′V ⊆ G′V ,H
′
E ⊆ G′E and source

and target function of H′ are restrictions of source and target functions of G′. In this
case, we write H′ �

� em // G′ to depict the embedding morphism which takes x ∈ H′ to
x ∈ G′. If f : G → G′ is a graph morphism, f −1(H′) is the graph which consists of all
vertices / edges that are mapped to H′ by f . In the same way as for sets we write f |H
for the restriction of f to a subgraph H ⊆ G. This will be applied later for the subgraph
H = f −1(H′) ⊆ G.

Member
Manager

Individual

members

Address

/addrListe-mails

Phone

phoneNr 0..1

context Individual inv:
self.addresses->size() > 0
or
self.phoneNr <> null

M1

context MemberManager
::addrList:List

derive:
self.members->collect(e-mails)

members

addrList

e-mails

phoneNr
[0..1]

Graph M1 with
constraints

Member
Manager

Individual Address

Phone

[or]

[=]

Fig. 3: UML model represented as directed graph

4 For any two morphisms h1 : A→ B, h2 : B→ C, we write h2 ◦ h1 for the composed morphism
((h2)V ◦ (h1)V , (h2)E ◦ (h1)E), i.e. (h2 ◦ h1)(a) = h2(h1(a)) for all a ∈ A.

6 Harald König | Zinovy Diskin

Many types of UML diagrams can be translated to graphs. For instance, in Fig.3,
class diagram M1 from Fig.1 is translated to graph M1: Classes and associations are
translated to nodes and edges. Constraints are also represented grafically, their name
given in square brackets, and the constraint scope shown by dashed lines, i.e a set of
elements over which the constraint is declared. We will elaborate on this in Sect.3.2. We
remark that other types of UML diagrams can be translated to graphs, as well [7,18].

There is an obvious way of representing typed data (i.e. objects and links between
them) as a graph A together with a graph morphism τ : A→ M, which assigns to every
data element of x ∈ A a type T = τ(x) ∈ M. In this case, M is called the type graph and
we say that data A is typed over M.

mbrs

logins

idenfs

priv

LoginList

Person Address

Phone

1:logins

1:idenfs

sn2:LoginList

b:Person f:Address

e:Phone
c:Person

M2

A2
g:Address

2:logins

comm
[or]

2:idenfs
y:comm

2

d:Person h:Address
3:idenfs

3:logins

Fig. 4: Typed Graph τ2

In Fig.4 there is data A2 typed over M2 (taken
from Fig.1 now with some obvious abbrevia-
tions). Graph morphism τ2 maps all data elements
to their type in M2. We depict data elements x
in the form a: T (read “element a is of type T”)
thus declaring that τ(x) = T . In Fig.4 there is
one LoginList-object which maintains 3 login ad-
dresses which in turn identify 3 persons. Person b
declares a private phone number which also is the
commercial number of person c. Person d declares
neither private nor commercial phone number.

We will say that every graph morphism τ :
A → M is a typed graph w.r.t. to type graph
M, since it completely represents the typed data.
We distinguish between legal and illegal typed
graphs: A typed graph τ : A → M is legal, if it
satisfies all constraints declared on M, otherwise
illegal. E.g. τ2 is illegal, because constraint [or] is
violated for person d. The other constraints, how-
ever, are satisfied.

3.2 Constraint Declarations

Table 1. Sample Constraints

Name c Shape S c

[0..1] 1
12 // 2

[or] 1 0
02
//

01
oo 2

[=] 0
01
//

02

$$
1

12
// 2

A key feature of constraints used in modeling is their dia-
grammatic nature: the set of elements over which a con-
straint is declared is actually a diagram of some shape
specific for the constraint. For example, the shape of mul-
tiplicity constraints (e.g. [0..1]) is a single arrow, while
the shape of constraint [or] from Fig.3 is two arrows with
common source, see Table 1. To declare a constraint in
type graph M, we recognize the constraint shape in the
graph and visualize it as was shown e.g. in graph M2
in Fig.4. Formally, this recognition is a graph morphism
δ : S c → M (called (shape) binding) from the shape S c of a constraint with name
c to graph M. This is shown in Fig.5, where constraint [or] is declared by binding
δ1 : S [or] → M1 (shape S [or] is shown in Table 1). In the same way δ2 recognizes the

Consistency of Interrelated Models 7

[or]-constraint in M2. The latter recognition also shows that shape bindings need not be
injective, because we have δ2(1) = Phone = δ2(2).

In Fig.5 the depicted edge assignments infer δ1(1) = Phone, δ1(0) = Individual,
δ1(2) = Address. Thus, to describe the mapping behavior of graph morphisms it is
enough to give the assignments on edges and isolated vertices (i.e. vertices that are not
source or target of any edge) only.

The set of elements in M the shape is mapped to, is called the range of the binding.
Any shape binding δ : S c → M is denoted c@δ and will be called constraint declaration
of c at (the range of) δ (in graph M).

mbrs

addr

eml

nr

MemberMgr

Individual Address

Phone

[or]

logins

idntfs

priv

LoginList

Person Address

Phone

comm
[or]

M1

M2

0 2

1

01

02
δ1

S[or] δ2

01 ֏ priv

02 ֏ comm

01 ֏ nr

02 ֏ eml

Fig. 5: (Reuse of) Shape bindings

In order to check consistency of typed graph τ : A → M against a fixed constraint
declaration c@δ, we need to define c’s semantics. This is done by programming a func-
tion VALIDATEc(τ∗: Typed Graph): BOOLEAN which has input τ∗ : C → S c, i.e. C is
a graph typed over c’s shape only. Validation shall be independent of element naming,
i.e. validatec(τ∗1) = validatec(τ∗2) whenever τ∗1 and τ∗2 are isomorphic5.

For example, function VALIDATE[or] acts on graphs typed over S [or] (cf. Table 1): it
returns true for a graph τ∗ : C → S [or], iff each element of type 0 in C has an outgoing
edge to some element of type 1 or to some element of type 2. Correspondingly, function
VALIDATE[=] acts on graphs typed over S [=]: it evaluates to true, if for each object
x: 0 the following commutatitivity constraint holds: If X is the collection of objects
reachable via 12-typed links from those objects reachable from x: 0 via 01-links, and Y
is the set of objects reachable along 02-links from x: 0, then X = Y .

5 Two typed graphs τ∗1 : B1 → S c and τ∗2 : B2 → S c are said to be isomorphic, if there is a type
compatible isomorphism f : B1 → B2, i.e. for which τ∗2 ◦ f = τ∗1.

8 Harald König | Zinovy Diskin

In this way, the validation pattern of constraint c is separated from verification logic
of particular declaration c@δ. Therefore an important feature of the DPF framework is
formal reusability of validation logic based on typed graphs. In this spirit, a function

CHECK(τ: Typed Graph, c@δ: ConstraintDecl): BOOLEAN,

which returns true if and only if τ : A→ M satisfies constraint declaration δ : S c → M,
must in a first step trace back τ to some typed graph τ∗ : C → S c and then validate τ∗.
It turns out that this can – in the context of graphs – be carried out with the categorical
pullback operation [3], which we will now explain. We assume each involved graph X
to have vertex set and edge set VX and EX as well as source / target functions sX / tX .

G

τ
��

S
δ // M

7→

C
δ′ //

δ∗(τ)
��

A

τ
��

S
δ // M

(PB)

Fig. 6: Pullback operation

Definition 1 (Pullback Operation). This operation has input two graph morphisms
δ : S → M and τ : A → M with common codomain (see left part of Fig.6). It has
output

– Graph C with
VC := {(v: T) | v ∈ VA,T ∈ VS , δ(T) = τ(v)}

and
EC := {(e: T ′) | e ∈ EA,T ′ ∈ ES , δ(T ′) = τ(e)}

with incidences determined by sC(e: T ′) = (sA(e): sS (T ′)) and tC(e: T ′) = (tA(e): tS (T ′)).
– Graph morphism δ∗(τ) : C → S defined by δ∗(τ)(x: T) = T for all (x: T) ∈ C,
– Graph morphism δ′ : C → A defined by δ′(x: T) = x for all (x: T) ∈ C,

see right part of Fig.6. We say that δ∗(τ) is the pullback of τ along δ and call δ′ a
traceability map.6

Therefore the assignment τ 7→ δ∗(τ) realizes the above mentioned trace back to a graph
typed over c’s shape graph S and traceability map δ′ enables type reconstruction (for-
ward trace). δ∗(τ) inherits the mapping behavior of τ, because an easy calculation shows
that τ ◦ δ′ = δ ◦ δ∗(τ), i.e. the recognized type (δ∗(τ)) in M of any element x ∈ C is the
type (τ) of its forward trace.

We demonstrate the effects of the pullback operation by formally checking that
typed graph τ2 : A2 → M2 (from Fig.4) does not satisfy constraint declaration [or]@δ2
(δ2 : S [or] → M2) from Fig.5. Fig.7 shows the complete application of the pull-
back operation. According to the above description of function VALIDATE[or] one ob-
tains validate(δ∗(τ2)) = f alse, because d: Person: 0 has neither an outgoing edge to a
0-typed nor to a 1-typed vertex.

The pullback operation provides the right amount of restriction and retyping:
6 See the explanations below why this terminology is used.

Consistency of Interrelated Models 9

mbrs

logins

idenfs

priv

LoginList

Person Address

Phone

1:logins

1:idenfs

sn2:LoginList

b:Person f:Address

e:Phone
c:Person

M2

A2

g:Address

2:logins

comm
[or]

2:idenfs
y:comm

2

d:Person h:Address

3:idenfs

3:logins

20 2

1

01

02

S[or] 01 priv
02 comm

C

e:Phone:1

e:Phone:2
y:02

x:01 2́

2
*(2)

b:Person:0

c:Person:0

d:Person:0

Fig. 7: How function CHECK works

– Restriction: In a first step it restricts precisely to those elements of A, that are typed
in elements that are in the image of δ.

– Retyping: Then this remaining portion is retyped. Each element’s new type in C is
a preimage of its old type in A under δ, thus tracing back to validation pattern [or].

If there is more than one preimage of type T of an element x ∈ A (in Fig. 7 this is
the case for x = e: Phone, because δ2(1) = Phone = δ2(2)), then – according to the
definition of VC in Def.1 – there are as many copies of x in C as there are preimages of
T in S . This copying is necessary because otherwise the type of element e in C remains
ambiguous and constraint satisfaction for persons b and c may fail during validation.

We also stress the fact that constraint violation of d: Person: 0 can be ”traced for-
ward”: δ′2(d: Person: 0) = d: Person enables immediate marking7 of the very element,
which violates the constraint in A2.

We summarise these considerations by programmatically giving the design of the
check function:

BOOLEAN CHECK(τ : TypedGraph, c@δ : ConstraintDecl){

RETURN validatec(δ∗(τ)); (1)

}

We say that τ satisfies c@δ and write

τ |= c@δ,

if check(τ, c@δ)=true. τ is called a legal typed graph over M, if it satisfies all constraints
declared in M, otherwise illegal.

7 e.g. by a grafical tool

10 Harald König | Zinovy Diskin

Since validation is stable under renaming, each typed graph isomorphic to δ∗(τ) can
also be taken as pullback. We could e.g. have named the C-vertices e: 1, e: 2, b: 0, c: 0, d: 0
in Fig.7. Forward tracing as described above is still possible with the help of δ′. Re-
naming also enables C to be a proper subgraph of A, if S ⊆ M and δ : S ↪→ M is the
respective embedding, because it is easy to see that δ′ is injective in that case. Thus

S ⊆ M ⇒ (C = τ−1(S) and δ∗(τ) = τ|C). (2)

3.3 Partial Graph Morphisms

In Sect.4, partial graph morphisms

G
f / G′

will be used (the ”partial” arrow tip symbolizes partiality of the morphism): Partial mor-
phisms may only be defined on a subgraph dom(f) ⊆ G. Clearly, any graph morphism
h : G → G′ as defined in Sect.3.1 is a partial morphism with dom(h) = G.

Partial morphisms G
f / G′ and G′

g / G′′ can be composed by letting

f ′ = f | f −1(dom(g)) : f −1(dom(g))→ dom(g)

be the restriction of total f : dom(f) → G′ to the preimage of dom(g) ⊆ G′ under f .
Then the composition g◦ f of partial maps f and g is defined to be the map g◦ f ′, which
is defined on f −1(dom(g)) ⊆ dom(f) ⊆ G and undefined otherwise.

Note that a partial morphism G
f / G′ gives rise to an embedding graph mor-

phism dom(f) �
�− f // G where f is total on dom(f).

4 Multi-Models and Multi-Instances

Modeling a complex system usually results in a multi-model, i.e., a set M1, . . . ,Mn of
model components for some n ≥ 1. In Sect.2, for instance, there are the 4 models
M1, . . . ,M4, cf. Fig.1 and Fig.2 which have to be considered as a collective artefact in
order to investigate the mentioned inter-model constraint therein. In this case, graphs
typed over M1, . . . ,M4 have to be investigated, i.e. heterogeneously typed data τ j :
A j → M j must be analysed altogether.

In the example, typed data A1, . . . , A4 are artefacts on MOF8 level 0 whereas M1, . . .,
M4 are on level 1. Since – in the graph-based view – it makes no difference whether
τ j : A j → M j is data typed over models, or whether τ j : M j → MM j are models that
conform to (are heterogeneously typed in) metamodels MM1, . . . ,MMn, the forthcom-
ing theory can be applied to typed data as well as for typed models. In the latter case,
the M j may be class diagrams, sequence diagrams, state-charts, or activity diagrams on
level 1, MM j being the corresponding metamodels on level 2.

8 Meta-Object-Facility, cf. http://www.omg.org/mof/

Consistency of Interrelated Models 11

Because scenarios with typed data (n = 0) better demonstrate the advantages of the
forthcoming inter-model constraint checking algorithm, we adhere to the scenario of
Sect.2, keeping in mind that the algorithm can likewise be applied to any MOF level as
long as type conformance can be coded by typed graphs.

4.1 Model Matching

In the example of Sect.2, M1, . . . ,M4 collectively represent a single system and any
formal treatment has to consider overlaps, i.e. the definitions of common terminology
in different models. E.g., the concept “Address” occurs in 3 of the above-mentioned
models. Names of common concepts, however, may differ: Individual in M1 and Person
are differently named, yet both domains may speak of the same concept.

It is our goal to formally match common concepts by means of graph morphisms:
It is well-known, that in the case of two models M1 and M2 this can be achieved with a

span of two graph morphisms M1 M0
m1oo m2 // M2 , where auxiliary graph M0 con-

tains all common concepts. Then x1 ∈ M1 and x2 ∈ M2 are declared to be the same, if
there is x0 ∈ M0 such that m1(x0) = x1 and m2(x0) = x2.[11]

It turns out that in the case of an arbitrary number of model graphs M1, . . . ,Mn

these spans between the models are no longer helpful. This can already be seen in the
case n = 3. It can happen that we want to specify sameness of two elements x1 ∈ M1
and x2 ∈ M2 on the one hand, and of three elements y1, y2, y3 in M1,M2,M3 on the
other hand. Then for the first specification we would need a binary span, and for the
second specification we would need a ternary span, each of them with its own auxiliary
structure. In general, each new occuring number k of same elements x1, . . . , xk requires
a new span of arity k. This may lead to hardly manageable structures.

Instead of using total graph morphims for matching, we can, however, use partial
graph morphisms as introduced in Sect.3.3. Suppose we want to declare sameness of
xi1 ∈ Mi1 , xi2 ∈ Mi2 , . . . , xik ∈ Mik for some k ∈ {2, . . . , n}, then in a graph M0 there must
be an element x0 which represents this common term or concept. Furthermore partial
assignments

M0
m j / M j

have to be defined for all j ∈ {1, . . . , n} such that mi j (x) = xi j for 2 ≤ j ≤ k and m j

is undefined on x for all j < {i1, . . . , ik}. Since sameness declaration of several edges
in models M1, . . . ,Mn infers sameness of their respective source and target vertices,
this guarantees that M0 becomes a graph and m j become partial graph morphisms. We
call M0 the glueing graph or overlap of models M1, . . . ,Mn. Elements of M0 are called
match (or sameness) witnesses.

By means of the running example of Sect.2 we illustrate this specification of com-
monalities: Suppose, one claims that the following concepts are declared to coincide:

1. ”Phone” in M1 and M2
2. ”Individual” and ”Person” although they are named differently.
3. Since sn1 is a network of private persons, it is decided to match ”phoneNr” and

”private” in M1 and M2, too.
4. Obviously ”Address” in M1, M2, and M3.

12 Harald König | Zinovy Diskin

5. ”MemberMgr”, ”LoginList”, and ”Social Network” in M1, M2, and M4 (see the
remarks after the constraint declaration in Sect.2).

Note that declaration 3 infers declarations 1 and 2 because a matched edge yields match-
ing of its source and target, too. Fig.8 shows these four matching declarations9 by means
of glueing graph M0 (consisting of 4 vertices and one edge) and partial graph morphisms
m1, . . . ,m4. Common colors indicate declared matches. m1, . . . ,m4 map according to
the coloring. Whereas m1 and m2 are total morphisms, m3 and m4 are proper partial,
because they are e.g. undefined on edge n/p. The 5 elements of M0 witness sameness
declarations as follows: Vertex Ph represents declaration 1, I/P reflects declaration 2,
edge n/p specifies 3, vertex A witnesses 4, and M/L/S represents 5.

mbrs
/addr

eml
nr

M1

MemberMgr

Individual Address

Phone

[or]

[=]
logins

idenfs

priv

M2

LoginList

Person Address

Phone

[or] comm

sender

Address

E-Mail

recvrs

[1]

M3

from

SocNetw

Contact

to

M4

[1][1]

n/p

M0

M/L/S

I/P A

mbrs

idenfs
n/p

M+

SocNetw

Ind/Pers Address

Phone

comm

eml

E-Mail

Contact

from

to

sender recvrs

k2 k3

[consMailsContacts]

Ph

Fig. 8: Matching of concepts in models M1, . . . ,M4 and resulting colimit graph M+

Definition 2 (Multi-Model). We call this configuration of models M1, . . . ,Mn, glueing

graph M0 and partial morphisms M0
m j / M j (1 ≤ j ≤ n) a multi-model M. Be-

cause it is completely determined by the involved partial morphisms (their domain and
codomain specifying all participating graphs) we write

M = (M0
m j / M j)1≤ j≤n

(we use also the short notation M = (m j)1≤ j≤n, if domains and codomains are known).

This structure is also used in [9], sect. 9.2., where M0 is called glue, the partial mor-
phisms are called connections, together they are called a (well-formed) configuration.

9 Due to readability, we depicted only some of the constraints of M1, . . . ,M4.

Consistency of Interrelated Models 13

4.2 Merging

As announced in the introduction, an important operation on arrangements of graphs
and graph morphisms as e.g. shown in the upper half of Fig.8 (graphs M0,M1, . . . ,Mn

and partial morphisms m1, . . . ,mn for n = 4) is the construction of the merge of all M j

modulo their overlaps, such that inter-model constraints as in Sect.2 can formally be
declared and checked.

Definition 3 (Merge for Multimodels). Let multi-model M = (M0
m j / M j)1≤ j≤n be

given as above. We say that x0 ∈ M0 and x ∈ M j are related, written

x0 ∼ x

if m j is defined on x0 and m j(x0) = x. Let ≡ be the reflexive and transitive closure of
binary relation ∼, then we say that

M+ :=

 ⊎
0≤i≤n

Mi

/ ≡
is the merge of M 10 and write M+ = merge(M).

For each i ∈ {0, 1, . . . , n} there is the graph morphism ki : Mi → M+, which maps
each x to its equivalence class [x]≡. Each ki is called the reccognition of Mi in the merge
of multimodel M. By the definition of ∼, we obtain

k0 = k j ◦ m j (3)

for all j ∈ {1, . . . , n} on the domain of definition of m j.

This definition is again in the spirit of [9], where multi-model semantics is explicitely
defined by the merge of the resulting diagram. An example of the merge operation for
multi-models is shown in Fig.8: We obtain for instance

Individual ≡ Person

because m1(I/P) = Individual and m2(I/P) = Person. Therefore k1(Individual) =
k2(Person) and this element is called Ind/Pers in M+. In the same way MemberMgr ≡
LoginList ≡ S ocNetw, nr ≡ priv and sameness of concepts Address. Vertex Contact ∈
M4 is not reached via any m j and thus not identified with any other concept. The same
is true for E-mail and also for all edges except nr and priv.

We note that it is necessary to define M+ by constructing a corresponding quotient
w.r.t. equivalence relation ≡, because it is not possible to define M+ with the help of
the set-theoretical union: The latter would yield two different vertices Individual and
Person in M+ while the former enables merging this concept to a single one Ind/Pers.

10 ⊎
0≤i≤n Mi denotes the disjoint union of the model components (including glueing graph M0),

i.e. their union still disregarding sameness.

14 Harald König | Zinovy Diskin

4.3 Data Matching

In addition to the matching of type graphs, it is necessary to do the same for data graphs
and their typings.

Definition 4 (Multi-Instance). Let M = (M0
m j / M j)1≤ j≤n be a multimodel.

– An incomplete (or unrelated) Multi-Instance over M is a collection

T = (τ j : A j → M j)1≤ j≤n

of typed graphs.
– A complete(ly related) multi-instance over M is a collection

(τi : Ai → Mi)0≤i≤n

together with partial graph morphisms

A0
a j / A j

(1 ≤ j ≤ n) such that the type compatibility conditions

m j ◦ τ0 = τ j ◦ a j (4)

hold for all 1 ≤ j ≤ n. A complete multi-instance over M is denoted

T = ((τi : Ai → Mi)0≤i≤n, (A0
a j / A j)1≤ j≤n)

with the corresponding short notation T = ((τi)0≤i≤n, (a j)1≤ j≤n) if all participating
graphs are known.

– Matching of an incomplete multi-instance T = (τ j : A j → M j)1≤ j≤n is the process
of finding a complete multi-instance T = ((τi : Ai → Mi)0≤i≤n, (a j : A0 ⇀ A j)).

In this context, graph morphisms a j play the same role as morphisms m j: While the
m j’s control the type matching, a j declare sameness of elements in the data graphs
(data matching). Thus matching is an enhancement of τ1, . . . , τn with . . .

1. . . . morphism τ0 : A0 → M0 which specifies typing of sameness witnesses in glue-
ing graph A0 and

2. . . . overlap specification of data A1, . . . , An with the help of glueing graph A0 and

partial morphisms A0
a j / A j (1 ≤ j ≤ n) in the same way as for multi-models

(cf. Def.2) such that this matching is compatible with type matching.

In the same way as in Def.3 we can now establish the following operation:

Consistency of Interrelated Models 15

Definition 5 (Merge Operation for Data). Let complete multi-instance T = ((τi :

Ai → Mi)0≤i≤n, (A0
a j / A j)1≤ j≤n) be given. Then in the same way as in Def.3 there

are relations ∼ and ≡ now based on morphisms a j which make up the data merge A+

of the data graphs A0, A1, . . . , An modulo their matched overlap (a j)1≤ j≤n together with
recognition morphisms li : Ai → A+ (0 ≤ i ≤ n). It can be shown that this yields a
unique typing τ+ : A+ → M+, which is compatible with recognitions, i.e. τ+ ◦ li = ki ◦ τi

for all i ∈ {0, . . . , n} [1]. We write

τ+ = Merge(T)

Note the difference in notation: merge depicts the respective operation on multi-models,
Merge is the operation on multi-instances.

4.4 Pulling Back Multi-Instances

We fix a graph morphism δ : S → M, then the pullback operation along δ of Def.1 can
be applied to arbitrary graph morphisms k : H → M: In

G δ′ //

δ∗(k)
��

H

k
��

S δ // M

(PB)

G and δ∗(k) are computed in the same way as C and δ∗(τ) in Def.1. We now describe an
important extension of this operation: Let k1 : H1 → M and k2 : H2 → M be two graph

morphisms with common codomain M and H1
f / H2 be a compatible partial graph

morphism, i.e. k2 ◦ f = k1, see the left part of Fig.9. Having computed the respective
pullbacks δ∗(k1) : G1 → S and δ∗(k2) : G2 → S of k1 and k2 along δ, we can define the

mapping G1
δ∗∗(f) / G2 by

δ∗∗(f)(x: T) := (f (x): T),

for all x ∈ dom(f), and undefined otherwise, cf. right part of Fig.9. It is easy to see that
δ∗∗ is a partial graph morphism which is compatible with typing and traceability maps.

H1

f
�

k1

��

H2

k2
��

S
δ

// M

7→

G1

δ∗∗(f)
�

δ∗(k1)

��

δ′1 // H1

f
�

k1

��

G2

δ∗(k2)
��

δ′2

// H2

k2
��

S
δ

// M

Fig. 9: Pullback operation applied to type compatible graph morphisms

16 Harald König | Zinovy Diskin

We apply these results to inter-model constraint’s shape binding δ : S c → M+:
There are the morphisms k0 : M0 → M+ and k j : M j → M+ for j ∈ {1, . . . , n} for which

operator δ∗ can be applied. For the partial morphisms M0
m j / M j equation (??) holds,

such that we can compute δ∗∗(m j). It can also be shown that we can compute δ∗∗(τ j).
A generalization of the restriction and retyping procedures of Sect.3.2 for graph τ

typed over a single model M to multi-instance T typed over a multi-model M is

Proposition 1. Let M = (mi)0≤i≤n be a multi-model and (ki : Mi → M+)0≤i≤n be the
corresponding recognitions of Mi in the merge of M.

1. A graph morphism δ : X → M+ gives rise to an operator δ? which transforms
any incomplete multi-instance T = ((τ j : A j → M j)1≤ j≤n over M to an incomplete
multi-instance T′ = (δ∗∗(τ j) : B j → X j)1≤ j≤n over X = (δ∗∗(mi))0≤i≤n. We write

T′ = δ?(T)

In the same way any complete multi-instance T = ((τi : Ai → Mi)0≤i≤n, (a j :
A0 ⇀ A j)) over M is transformed to complete multi-instance T′ = (δ∗∗(τi) : Bi →

Xi)0≤i≤n, (δ∗∗(a j) : B0 ⇀ B j) over X:

T′ = δ?(T)

2. In both cases the collection (ki)0≤i≤n of M is transformed to (δ∗(ki) : Xi → X)0≤i≤n.
3. If δ : X ↪→ M+ is an embedding, then, in both cases, the traceability maps Xi → Mi

and Bi → Ai can be taken to be embeddings, i.e. for all i: Xi ⊆ Mi and Bi ⊆ Ai.

A complete formal reasoning for this result can be found in the Appendix. The trans-
formation is shown in Fig.10 for the case of complete multi-instance (traceability maps
are omitted).

5 Inter-Model Constraint Checking

In this chapter, an algorithm is introduced which efficiently verifies consistency of a
collection of typed graphs, i.e. an incomplete multi-instance

T := (τ j : A j → M j)1≤ j≤n

over multi-model M = (M0
m j / M j)1≤ j≤n.

Definition 6 (Inter-Model Constraint Declaration). Let M+ := merge(M) and c be a
constraint with shape graph S c (cf. Sect.3.2). A shape binding

δ : S c → M+

is called an inter-model constraint declaration on multi-model M and is written c@δ.

Consistency of Interrelated Models 17

δ
δ*

τ0
τ1

τn

**(τ0)
**(τ1)

**(τn)

Fig. 10: The Operator δ?

Thus it is the goal to decide whether some multi-instance T satisfies inter-model con-
straint declaration c@δ, which we write

T |= c@δ.

We already gave an example, namely the requirement of Sect.2, which claims consis-
tency of recorded e-mails according to model M3 and stored contacts due to M4 for
social networks sn1 and sn2, whose domains are based on models M1 and M2. In the
sequel consMailsContacts denotes this constraint declaration, which we repeat here:

|{c ∈ Contact | c. f rom = sn1 ∧ c.to = sn2}|

= |{e ∈ E − Mail | e.sender ∈ sn1.addrList ∧ e.receivers ∩ sn2.logins , ∅}|

We will compare two implementations (Sect.5.1 and 5.2, resp.) both of which have the
following input and output:

– Input:Inter-model constraint declaration c@δ on M, incomplete multi-instance T.
– Output: The boolean value which indicates whether T |= c@δ.

In both cases, we assume M+ = merge(M) to be already computed. Note that this
computation must be carried out only once prior to the invocations of the checking
functions for different inputs (c@δ,T). 11

11 Moreover, complexity for this computation is low, because merge(M) can be computed algo-
rithmically by partitioning the disjoint union of the models due to binary relation ≡, see Def.3.
This requires little effort, since we deal with a manageable number n of small models (in
our example n = 4). Matching effort (e.g. to decide whether to declare sameness of concepts
”Individual” and ”Person”) is acceptable.

18 Harald König | Zinovy Diskin

5.1 Match→Merge→Localize (MML)

The following algorithm is the original proposal of [19] to check T |= c@δ:

1. Match incomplete multi-instance T (cf. Def.4), which gives

T = ((τi : Ai → Mi)0≤i≤n, (A0
a j / A j)1≤ j≤n).

2. Compute τ+ = Merge(T) as described in Def.5.
3. The return value of check(τ+, c@δ) provides the result of the algorithm.

Because of the order, in which the steps are carried out, and since in step 3 checking
is performed on restricted (hence localized) data (cf. Def.1), we call this method the
”Match→Merge→Localize”-approach MML. It is thus reduced to a check of a single
but huge instance τ+:

T |= c@δ :⇐⇒ τ+ |= c@δ

In [11] it is further analysed and assessed. It turns out that there are two major draw-
backs:

1. The total collection of data structure has to be traversed in order to perform match-
ing in step 1. Matching decisions can not always be made automatically, yet match-
ing is necessary also for data that is not specific to the given constraint declaration.

2. In step 2, one has to deal with the entire union of data (usually a huge structure) in-
dependent of whether there is only a small portion being affected by the constraint.

These disadvantages can easily be demonstrated in our running example: Although con-
straint declaration c@δ = consMailsContacts does not affect individuals / persons in
M+ (see Fig.8), this comprehensive approach demands to deal with all personal data
during computation of τ+.

More seriously, one has to match individuals (typed in M1) with persons (typed in
M2). Experience, however, shows that data of the same person stored in two different
databases often differs due to typing errors, undocumented properties, or inconsistent
updates. Eliminating these contradictions in large databases (with probably thousands
of doubly captured data records) is far beyond hopeless.

These considerations show that an implementation of inter-model constraint check-
ing along its definition is not feasible.

5.2 Localize→Match→Merge (LMM)

This section is the main contribution of the paper, in that it proposes a more efficient
algorithm to check T |= c@δ. We fix these two inputs and - for the sake of simplicity -
write S instead of S c for the shape graph of c.

Recall the discussion about pullback characteristics restriction and retyping after
Fig.7. These two characteristics can be formalized by decomposing δ into two map-
pings:

δ = δr ◦ δt.

Consistency of Interrelated Models 19

δr : R ↪→ M+ specifies how the range R of δ is embedded in M+, i.e. it specifies how
to restrict from M+ to this range. The retyping part δt : S → R specifies how to trace
back the scoped types of the range R in M+ to the types of c’s arity shape.12 In Fig.8,
R would be the subgraph of M+ consisting only of elements affected by the constraint,
namely vertices S ocNetw, Contact, Address, E-Mail together with the edges between
them.

We now describe the improved checking algorithm. When we use the term ”local”,
we always mean that types or data are considered on constraint affected parts only:

1. (Model and Data Localization) Compute incomplete multi-instance

T′ := δ?r (T) = (τ′j := δ∗∗r (τ j) : B j → R j)1≤ j≤n

over multi-model R = (R0
δ∗∗(m j)/ R j)1≤ j≤n by applying operator δ?r from Prop.1.

One obtains Ri ⊆ Mi (0 ≤ i ≤ n) and B j ⊆ A j (1 ≤ j ≤ n), because δr is an
embedding (see Prop.1, 3).

2. (Local Data Matching) Match incomplete multi-instance T′, i.e. declare sameness
of objects in all B j by extending to a complete multi-instance

T
′

:= (τ′i : Bi → Ri)0≤i≤n, (B0
b j / B j)1≤ j≤n)

over multimodel R.
This local matching cannot contradict a hypothetical global match, i.e. it must be
carried out such that all sameness witnesses for the local match are equally-typed
witnesses in a hypothetical global match (τi : Ai → Mi)0≤i≤n with partial morphisms

(A0
a j / A j)1≤ j≤n. Formally:

τ′0 = τ0|τ−1
0 (R0) and dom(b j) = a−1

j (B j) with b j = a j on dom(b j). (5)

3. (Local Retyping) Let

T
′′

:= δ?t (T
′
) = (τ′′i : Ci → S i)0≤i≤n, (C0

c j / C j)1≤ j≤n)

be complete multi-instance over multi-model S = (S 0
s j / S j)1≤ j≤n due to Prop.1

for the transformation of complete multi-instances.
4. Compute τ′′ = Merge(T

′′
) : C+ → S according to Def.5.

5. Apply validatec(τ′′).

Because of early localization, this algorithm is called the ”Localize→Match→Merge”-
approach (LMM), in which step 2 is the only possibly manual or at least semi-automatic
step. Before we illustrate the algorithm along the example, we state the main theorem
of the paper:

12 δr ◦ δt is obtained by the well-known epi-mono-factorization applied to vertex- and edge-
mappings, resp.

20 Harald König | Zinovy Diskin

Theorem 1 (Correctness). Let T be an incomplete multi-instance over multi-model M
and c@δ be an inter-model constraint declaration on M, then

MML(T, c@δ) = LMM(T, c@δ).

A formal proof of this theorem is given in the Appendix. ut

Let’s illustrate the algorithm along the example of Sect.2:

/addr

R1

MemberMgr

Address

logins

R2

LoginList

Address
sender

Address

E-Mail

recvrs

[1]

R3

from

SocNetw

Contact

to

R4

[1][1]

R0

M/L/S

A

R

SocNetw

Address

E-Mail

Contact

from

to

sender recvrs

k2 k3

[consMailsContacts]

* * *
*

Fig. 11: Step 1: Early Model Component Restriction

Step 1: Fig.11 shows model localization: Ri are the intersections of Mi with the
range of δ. Fig.12 shows data localization exemplified for data typed over M2: Persons
and phone numbers are eliminated since they do not participate in constraint checking.

Step 2: Suppose B1, . . . , B4 contain the data (vertices) of Tab.2. In order to maintain
adresses, there is one MemberMgr-vertex sn1 in B1 and one LoginList-object sn2 in
B2. Assume B3 contains only one e-mail with sender b3,1 and receiver b3,2. Moreover,
assume B4 contains one contact from sn1 and sn2. For B2 see also Fig.12.

Obviously there are some common e-mail-addresses, which have to be matched. In
order to do this, we define the set (discrete graph)

B0 = {ang: A, bar: A, sn1: M/L/S , sn2: M/L/S }

of sameness witnesses, where elements are typed over R0 (cf. Fig.11). Moreover, there

are the partial morphisms B0
b j / B j which map according to the colors, i.e. they

specify b1,2 = b2,1 = b3,1 as well as b1,1 = b2,2 and also declare sameness of entities
with identifier sn1 as well as objects with identifier sn2.

Consistency of Interrelated Models 21

mbrs

logins

idenfs

priv

LoginList

Person Address

Phone

1:logins

1:idenfs

sn2:LoginList

p1:Person b2,1:Address

e:Phone
p2:Person

M2

A2

b2,2:Address

2:logins

comm
[or]

2:idenfs
y:comm

2

R2

logins
LoginList

Address

1:logins
sn2:LoginList

b2,1:Address

b2,2:Address

2:logins

2

B2
´

Fig. 12: Step 1: Early Data Restriction for τ2

Table 2. Data Matching

B1 B2 B3 B4

sn1 sn2 :E-mail :Contact
b1,1 =barack@us.gov b2,1 =:angela@bt.de b3,1 =:angela@bt.de(sender) sn1(from)
b1,2 =:angela@bt.de b2,2 =:barack@us.gov b3,2 =:justin@ottawa.ca(receiver) sn2(to)

This matching can be performed semi-automatically: E-mail addresses can be matched
automatically by string equality. Objects sn1 and sn2 might be matched manually or an
automatic proposal has to be confirmed by a user. Yet there is only small manual effort.
Note that step 2 is the most expensive one, since data matching is possibly concerned
with bigger data records than in this toy example. But early localization enables sig-
nificant reduction of the data space, in which matching takes place: In our case, it is
not necessary to match all involved individuals with all persons, which was already
considered nearly impossible (see the concluding comments in Sect.5.1).

Step 3 performs retyping to types of S , the shape graph of inter-model constraint
c, which underlies the declaration consMailsContacts. This shape graph is shown in
the bottom of Fig.13. The color displays of the vertices correspond to the colors of its
binding into the graph R in Fig.11. Retyping has the following effects: E-mail-addresses
b1,1, . . . , b3,2 are retyped from type Address to type 1 and social network identifiers are
retyped to type 0. Moreover, E-mail-objects are now of type E, Contacts are of type
C. Likewise edge retypings f rom 7→ f , to 7→ t, addr 7→ a, logins 7→ l, sender 7→ s,
receiver 7→ r.

Step 4 computes the merge of this data which is shown in Fig.13. The upper graph
depicts the facts that there is one contact (: C) from (: f) social network 1 to (: t) social
network 2. sn1 maintains addresses ang and bar and sn2 has the same addresses as
logins (cf. Tab.2). Finally, there is one e-mail with sender (: s) being the address ang
and receiver (: r) being the address just.

22 Harald König | Zinovy Diskin

0 1 E

f

t

s

rl

a

τ´´

C

:C

sn1:0

sn2:0

ang:1

just:1

bar:1

:E

:s

:r

:f

:t

1:a

2:a

1:l

2:l

Fig. 13: Final merge of affected data typed
over shape graph for consMailsContacts

Step 5 validates this instance to
f alse, because the contact from sn1 to
sn2 is not reflected by an e-mail that is
received by a member of sn2 (just is
not part of any social network). Imme-
diate marking in input T is easily pos-
sible as follows: The recognition maps
of T

′′
enable trace back to instances

typed over S 1, . . . , S 4. Subsequent trace
forward along traceability maps of pull-
backs detect the error in one or several of
A1, . . . , A4 and can mark it for the user.

Recall that the key to a successful
methodology was early localization, i.e.
basically we changed the sequence of
the application of the operations match,
merge and localize (Defs. 4, 5, 1):
Early localization significantly reduces
the data space which is subject for match
searches. Finally, Theorem 1 guarantees that the result of MML is not falsified by
LMM.

6 Conclusion

The most important direction for future research are:

– We plan to evaluate the algorithm in the tooling framework developed at Bergen
University College [12,17]. Our idea is to enhance the DPF editors to make them
inter-metamodel aware.

– Take into consideration view definitions (on metamodels) and view execution (on
models)[4]. The challenge will be to find appropriate generalization and extensions
of the mathematical machinery.

– Extend the scope of underlying grafical structures: From simple directed graphs to
more general structures have, e.g. attributed graphs [8] or general presheaf topoi in
order to inline constraint declarations [14].

– The next natural step is to extend multi-model consistency checking to multi-model-
repairing/completion, e.g.[15]. Model relations in the context of update procedures
should consist of a generalization of the (binary) delta-lens framework [6].

– After the construction of the colimit of sketches, all intra-model constraint decla-
rations are dealt with. It is now possible to add additional (inter-model) constraint
declarations. Categorically this means that we enlarge and thus leave the original
sketch-colimit: If merged sketches with additional inter constraints are used, they
are no longer a colimit. Must the merge of models also take this deviation into ac-
count? Here is a point where to think about semantics in the context of metamodels
that come as functors B ∗ α→ S et.

Consistency of Interrelated Models 23

– The discrete diagram M : {1, . . . , n} → G should be replaced by an arbitrary dia-
gram, because there might already be natural relations and dependencies between
the metamodels, e.g. an OR-dependency between ER- and object models (table =
class, foreign key = association) or different versions of metamodels, M2 being an
evolvement of M1 hence a span M1 ←→ M2.

References

1. Arbib, M., Manes, E.: The Categorical Imperative. Academic Press New York San Francisco
London (1975)

2. Barr, M., Wells, C.: Category Theory for Computing Sciences. Prentice Hall (1990)
3. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling. Electr.

Notes Theor. Comput. Sci. 203(6), 19–41 (2008)
4. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli categories. In:

Fundamental Approaches to Software Engineering, pp. 163–177. Springer (2012)
5. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling. In: Pro-

ceedings of the Second Workshop on Applied and Computational Category Theory (ACCAT
2007). pp. 19–41. ENTCS (2007)

6. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model trans-
formations: the asymmetric case. Journal of Object Technology 10, 6: 1–25 (2011), http:
//dx.doi.org/10.5381/jot.2011.10.1.a6

7. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous models for global
consistency checking. In: Models, LNCS, vol. 6627, pp. 165–179. Springer (2011)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mations. Springer (2006)

9. Fiadeiro, J.L.: Categories for Software Engineering. Springer (2005)
10. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Dover Publications (1984)
11. König, H., Diskin, Z.: Advanced local checking of global consistency in heterogeneous

multimodeling. In: Modelling Foundations and Applications - 12th European Conference,
ECMFA 2016, Held as Part of STAF 2016, Vienna, Austria, July 6-7, 2016, Proceedings. pp.
19–35 (2016), http://dx.doi.org/10.1007/978-3-319-42061-5_2

12. Lamo, Y., Wang, X., Mantz, F., Bech, Ø., Sandven, A., Rutle, A.: DPF workbench: A multi-
level language workbench for MDE. Proc. of the Estonian Acad. of Sciences 62, 3–15 (2013)

13. Mac Lane, S.: Categories for the Working Mathematician, Second edition. Springer (1998)
14. Makkai, M.: Generalized sketches as a framework for completeness theorems. J. Pure Appl.

Algebra 115, 49–79, 179–212, 214–274 (1997)
15. Rabbi, F., Lamo, Y., Yu, I., Kristensen, L.: A diagrammatic approach to model completion.

In: 4th Workshop on Analysis of Model Transformations co-located with MODELS 2015.
pp. 56–65 (2015)

16. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A diagrammatic formalisation of mof-based
modelling languages. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE. Lecture Notes in
Business Information Processing, vol. 33, pp. 37–56. Springer (2009), http://dx.doi.
org/10.1007/978-3-642-02571-6_4

17. Rutle, A., Wolter, U., Lamo, Y.: A Diagrammatic Approach to Model Transformations. In:
Proceedings of the 2008 Euro American Conference on Telematics and Information Systems
(EATIS 2008). pp. 1–8. ACM (2008)

18. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S., Chechik, M.: Consistency checking
of conceptual models via model merging. In: RE. pp. 221–230 (2007)

19. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M., Chechik, M.: Consistency Check-
ing of Conceptual Models via Model Merging. In: RE. pp. 221–230. IEEE (2007)

24 Harald König | Zinovy Diskin

7 Mathematical Background

In this section, we justify Prop.1 and Theorem 1 with the help of appropriate underlying
mathematical theorems.

7.1 A closer look at partial morphisms

If G
f1 / G′ , we will denote the embedding dom(f) ⊆ G by dom(f) �

� f−1 // G . Hence
partial morphisms can equivalently be coded as spans

G dom(f)? _
f−1oo f1 // G′

of total morphisms. The described composition of two partial morphism G
f1 / G′

and G′
f2 / G′′ in Sect.3.3 can then be carried out as shown in figure 14. Here em is

the pullback of f−2 along f1. It can be shown that em can be chosen to be an embedding,

as well. The composition G
f2◦ f1 / G′′ is then defined to be the pair of total mappings

G H? _
f−1◦emoo f2◦ f ′1 // G′′ .

G′

(PB)G dom(f1)? _

f−1

oo

f1
;;

dom(f2)
2 R

f−2
cc

f2 // G′′

H
2 Rem

dd

f ′1

::

Fig. 14: Composition of Partial Morphisms

In the sequel, we will treat the use of any partial morphism in complete multi-
instances as span of total morphisms and composition will be carried out as just de-
scribed. E.g. partial m j is actually a pair (m− j : dom(m j) → M0,m j : dom(m j) → M j)
of total morphisms. Composition of total τ0 with partial m j thus translates the type com-
patibility conditions (4) for complete multi-instances to the fact that in the commutative
diagram

A0

τ0

��

dom(a j)
τ− j

��

? _
a− joo a j // A j

τ j

��
M0

(PB)

dom(m j)? _
m− j
oo

m j
// M j

(6)

the left square is a pullback for all j ∈ {1, . . . , n}.

Consistency of Interrelated Models 25

7.2 A closer look at pulling back multi-instances

In Sect.4.4 we described how the pullback operation along any morphism δ : X → M+

can be extended to partial morphisms H1
f / H2 , if k1 : H1 → M+ and k2 : H2 →

M+ are related to f by the equation h2 ◦ f = h1, see Fig.9. If f : H1 → H2 is total, we
write

f : k1 → k2

to underline the compatibility with k1 and k2. It is an important observation that in a
complete (and hence also in an incomplete) multi-instance T = ((τi : Ai → Mi)0≤i≤n, (a j :
A0 ⇀ A j)) over multi-model M = (mi)0≤i≤n, operator δ∗∗ can be applied to each involved
total graph morphism, because it can easily be verified that

– τi : ki ◦ τi → ki (−n ≤ i ≤ n)
– m j : k− j → k j
– m− j : k− j → k0
– a j : k− j ◦ τ− j → k j ◦ τ j
– a− j : k− j ◦ τ− j → k0 ◦ τ0

(1 ≤ j ≤ n). Here k− j := k j ◦ m j, and τ− j arises from the new type compatibility
diagram (6). This shows that operator δ? in Prop.1 is well-defined and its image is
nothing else than the image of all involved morphisms under the pullback functor [10]
from G↓M+ → G↓X. More precisely

δ?((τi)−n≤i≤n, (a− j, a j)1≤ j≤n) = ((δ∗∗(τi))−n≤i≤n, (δ∗∗(a− j), δ∗∗(a j))1≤ j≤n) (7)

and likewise for incomplete multi-instances. We have proved Prop.1.

7.3 More Categorical Facts

In order to prove Theorem 1, we provide some important categorical theorems. We use
the terms ”(comma) category”, ”colimit(ing cocone)”, ”diagram” in the usual categor-
ical sense (see e.g. [2]). Furthermore, we will use the fact, that operation merge and
Merge (see Defs 3 and 5) implement the colimit construction, for which, in the sequel,
the well-known universal properties will be used[10]. Moreover, for δ : S → M, we
will not distinguish anymore bewteen the application of the pullback functor to objects
of G↓M (δ∗) and to morphisms of G↓M (δ∗∗). In both cases we will write δ∗.

Lemma 1. Let G be the category of graphs, I a schema graph, D : I → G a diagram
and k = (ki)i∈I0 : D⇒ M a cocone. Consider the diagram

DM :

 I→ C↓M

i d // j 7→ ki
Dd // k j

1. k : D ⇒ M is a colimiting cocone if and only if k : DM ⇒ idM is a colimiting
cocone in the comma category G↓M. 13

13 k is then interpreted as the family (ki : ki → idM)i∈I0 of C↓M-morphisms.

26 Harald König | Zinovy Diskin

2. Let δ : S → M. If k : D⇒ M is a colimiting cocone in G then so is its image under
the pullback functor δ∗.

The statement is applicable to the present setting: I is taken to be the schema graph
for matching w.r.t. to total morphisms, i.e. it has vertices {−n, . . . , n} and for each j ∈
{1, . . . , n} two edges d− j : − j→ 0 and d j : − j→ j. Dd− j must be an embedding in all di-

agrams such that any diagram represents n partial morphisms D0 dom(Dd j)? _
Dd joo

Dd j // D j .
Proof of Lemma 1: Second statement: If k is a colimiting cocone in G, then so is k

seen as a cocone of G ↓ M (using the ”only-if”-part of the first statement). It is well-
known that the pullback functor δ∗ : G ↓M → G ↓ S preserves colimits [10], hence the
”if-part” of the first statement now applied to M := S yields the result.

The ”if-part” of the first statement follows from the fact that the functor

dom :


G↓a→ G

c

f ��

h // d

g��
a

7→ c h // d

is left-adjoint to the functor ×a, which assigns to any c ∈ G the projection π2 : c×a→
a, and hence preserves colimits [13].

”Only-if”-Part: Let σ : DM ⇒ t be any commutative cocone in C ↓ M with t :
T → M. Since σi = σ j ◦ Dd whenever d : i → j in I1, the assumption yields unique
u : M → T with

∀i ∈ I0 : u ◦ ki = σi (8)

We also obtain the cocone (t ◦ σi : Di → M)i∈I0 yielding unique v : M → M such that
for all i: v ◦ ki = t ◦ σi. Since σi : ki → t is a G ↓M-morphism, i.e. t ◦ σi = ki, all i, by
uniqueness of v: v = id. Furthermore, we also have t ◦ u ◦ ki = t ◦ σi for all i by (8), i.e.
t ◦ u = ν, hence t ◦ u = id, s.th. u : idM → t is the unique mediator of G↓M. ut

The next statement can be found in any textbook on category theory, e.g. [2].

Lemma 2 (Composition of Pullbacks). Let δ1 : S → R and δ2 : R→ M be two graph
morphisms and δ = δ2 ◦ δ1 : S → M. Then for any morphism f : X → M

δ∗1(δ∗2(f)) � δ∗(f).

7.4 Proof of Theorem 1

Obviously, we must prove

T |= c@δ ⇐⇒ validatec(τ′′). (9)

First of all we show that the applictation of the pullback functor δ∗r to a hypothetical
global match, i.e. to complete multi-instance T over M equals the result of step 2 of
LMM: This is trivially true for morphisms δ∗r (ki), for τ′j = δ

∗
r (τ j) and for the morphisms

δ∗(m j/m− j) (1 ≤ j ≤ n) of multi-model R, see the incomplete case in Prop.1. It is

Consistency of Interrelated Models 27

also true for τ′0 and the b j’s by (5), since these properties exactly express the fact that
τ′0 = δ

∗
r (τ0) and b j = δ

∗
r (a j).

It remains to show that τ′
− j, which arises from (6) for T

′
, equals δ∗r (τ− j). This follows

from the fact that in

B0

τ′0

��

N n

~~

dom(b j)? _
b− joo

τ′
− j

��

K k

xx
A0

τ0

��

dom(a j)? _
a− joo

τ− j

��

R0
N na1

~~

dom(r j)
δ∗(m− j)
oo

K k

xx
M0 dom(a j)

m− joo

(10)

the 4 arrows from the back to the front can all be taken to be embeddings (because pull-
backs preserve the monomorphism δr [10]). Moreover, the floor (by construction) and
the back (by (6) and because in step 2 completion yields r j ◦τ

′
0 = τ

′
j ◦b j) of the commu-

tative (!) cube are pullbacks, such that the composition of front and roof is pullback[2].
Since the front is pullback (again (6) and m j ◦ τ0 = τ j ◦ a j in the hypothetical global
match over M), this is also true for the roof by pullback decomposition[2]. Because we
already established τ′0 = δ

∗(τ0) and because it can also be shown that the top square in
the right of Fig.9 becomes a pullback square (use pullback decomposition), the left face
of the above cube is pullback. Hence, the same argumentation as above shows that the
right face is pullback, hence τ′

− j = δ
∗(τ− j) as desired.

This yields two aspects

1. Since M+ is the colimit of M with colimiting cocone (ki)−n≤i≤n, Lemma 1 justifies
that δ∗(ki)−n≤i≤n is the colimiting cocone of R, hence operator δ? is applicable to T

′

in step 3 (LMM).

2. By Lemma 2 the result T
′′

of LMM-step 3 is the image of T under δ? up to renaim-
ing.

Statement 2 of Lemma 1 and the fact that colimits in the arrow category (operation
Merge) can be constructed separately on the data and the model level, yield

δ∗(Merge(T)) � Merge(δ?(T))

Since τ+ = Merge(T) (see Sect.5.1) and τ′′ = Merge(T
′′

) (step 4), this yields

δ∗(τ+) � Merge(T
′′

) = τ′′ (11)

28 Harald König | Zinovy Diskin

and hence the codomain of τ′′ can indeed be taken to be S in step LMM-4. It remains
to prove (9). This follows from the following chain of equivalences:

T |= c@δ ⇐⇒ τ+ |= c@δ (According to the definition in Sect.5.1)
⇐⇒ check(τ+, c@δ) = true (Def. of |= in Sect.3.2)
⇐⇒ validatec(δ∗(τ+)) = true (Def. of function CHECK in Sect.3.2)
⇐⇒ validatec(τ′′) = true,

where the last equivalence is due to (11) and insensitivity of VALIDATE w.r.t. isomorphic
distortion.

ISSN 1863-7043

		2017-02-26T22:41:14+0100
	fhdwcsh

