Content of file GstKopplungNegaMax.java
package de.fhdw.gaming.ipspiel23.gst.strategies.impl; import java.util.Collection; import java.util.Optional; import de.fhdw.gaming.core.domain.GameException; import de.fhdw.gaming.core.domain.Move; import de.fhdw.gaming.core.domain.Player; import de.fhdw.gaming.core.domain.State; import de.fhdw.gaming.ipspiel23.gst.domain.IKopplung; import de.fhdw.gaming.ipspiel23.gst.strategies.domain.IGstKopplungsMiniMaxStrategy; /** * An implementation of the IGstKopplungsMiniMaxStrategy interface using the * NegaMax algorithm with alpha beta pruning and Time based Iterative Deepening. * * @param <P> The type of player in the game. * @param <S> The type of state in the game. * @author borkowitz */ public class GstKopplungNegaMax<P extends Player<P>, S extends State<P, S>> implements IGstKopplungsMiniMaxStrategy<P, S> { /** * Calculates the best move for the current player of a Game in a given Game state using the NegaMax algorithm. * Too complex, but not easily simplifyable. Warning suppressed. * * @param kopplung The game object representing the specific game being played. * @param state The current state of the game. * @param maximumComputationTime The maximum computation time allowed for calculating the move. * @return An optional containing the calculated best move, or empty if no move is available. */ @SuppressWarnings({ "checkstyle:CyclomaticComplexity", "PMD.CyclomaticComplexity", "PMD.CognitiveComplexity" }) @Override public Optional<Move<P, S>> calculateBestMove(final IKopplung<P, S> kopplung, final S state, // NOPMD by Dave on // 26.06.23, 22:57 final int maximumComputationTime) { Optional<Move<P, S>> bestMove = Optional.empty(); try { final Long startTime = System.currentTimeMillis(); final Optional<Collection<Move<P, S>>> possiblesMovesOptional = kopplung.getPossibleMoves(state); if (possiblesMovesOptional.isPresent() && possiblesMovesOptional.get().size() > 0) { for (int i = 0;; i++) { Integer bestMoveScore = Integer.MIN_VALUE; Optional<Move<P, S>> iterationBestMove = Optional.empty(); Integer iterationBestMoveScore = Integer.MIN_VALUE; if ((System.currentTimeMillis() - startTime) > (maximumComputationTime / 2)) { break; } for (final Move<P, S> move : possiblesMovesOptional.get()) { final S copiedState = state.deepCopy(); final P currentPlayer = kopplung.getCurrentPlayer(copiedState).get(); move.applyTo(copiedState, currentPlayer); copiedState.nextTurn(); final Integer moveScore = -this.negamax(kopplung, copiedState, i, Integer.MIN_VALUE, Integer.MAX_VALUE); // System.out.println(copiedState); // System.out.println(move); // System.out.println(moveScore); // System.out.println(""); // final Integer moveScore = simulateEvaluateMove(kopplung, state, i, move); if (moveScore > iterationBestMoveScore) { iterationBestMove = Optional.of(move); iterationBestMoveScore = moveScore; } } // System.out.println(""); // System.out.println(""); // System.out.println("________________"); if (iterationBestMoveScore > bestMoveScore) { bestMove = iterationBestMove; bestMoveScore = iterationBestMoveScore; } } } return bestMove; } catch (final Exception e) {
e.printStackTrace();
Since Checkstyle 6.0
This class is variation on RegexpSingleline for detecting single lines that match a supplied regular expression in Java files. It supports suppressing matches in Java comments.
return bestMove; } } /** * Extracted. * * @param kopplung * @param state * @param move * @return * @throws GameException */ private S simulateMove(final IKopplung<P, S> kopplung, final S state, final Move<P, S> move) throws GameException { final S copiedState = state.deepCopy(); final P currentPlayer = kopplung.getCurrentPlayer(copiedState).get(); move.applyTo(copiedState, currentPlayer); copiedState.nextTurn(); return copiedState; } /** * Performs the NegaMax algorithm to evaluate the score of a Game state. * Too complex, but not easily simplifyable. Warning suppressed. * * @param kopplung The game object representing the specific game being played. * @param state The current state of the game. * @param depth The current depth of the algorithm. * @param alpha The alpha value for alpha-beta pruning. * @param beta The beta value for alpha-beta pruning. * @return The evaluated score of the state. * @throws Exception */ @SuppressWarnings({ "checkstyle:CyclomaticComplexity", "PMD.CyclomaticComplexity", "PMD.CognitiveComplexity" }) private Integer negamax(final IKopplung<P, S> kopplung, final S state, final Integer depth, final Integer alpha, final Integer beta) throws GameException { final Optional<Collection<Move<P, S>>> possiblesMovesOptional = kopplung.getPossibleMoves(state); if (depth == 0 || kopplung.getIsGameOver(state).get()) { return kopplung.evalState(state).get(); } if (possiblesMovesOptional.isPresent() && possiblesMovesOptional.get().size() > 0) { Integer score = Integer.MIN_VALUE; Integer modAlpha = alpha; for (final Move<P, S> move : possiblesMovesOptional.get()) { final S copiedState = this.simulateMove(kopplung, state, move); final Integer childScore = -this.negamax(kopplung, copiedState, depth - 1, -beta, -modAlpha); if (childScore > score) { score = childScore - depth; } modAlpha = Math.max(modAlpha, score); if (modAlpha >= beta) { break; } } return score; } throw new GameException("Something went wrong with Negamax"); } }