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Abstract. Model management is a central activity in Software Engineer-
ing. The most challenging aspect of model management is to keep models
consistent with each other while they evolve. As a consequence, there
has been increasing activity in this area, which has produced a number
of approaches to address this synchronization challenge. The majority of
these approaches, however, is limited to a binary setting; i.e. the synchro-
nization of exactly two models with each other. A recent Dagstuhl seminar
on multidirectional transformations made it clear that there is a need for
further investigations in the domain of general multiple model synchro-
nization simply because not every multiary consistency relation can be
factored into binary ones. However, with the help of an auxiliary artifact,
which provides a global view over all models, multiary synchronization
can be achieved by existing binary model synchronization means. In this
paper, we propose a novel comprehensive system construction to produce
such an artifact using the same underlying base modelling language as the
one used to define the models. Our approach is based on the definition
of partial commonalities among a set of aligned models. Comprehensive
systems can be shown to generalize the underlying categories of graph
diagrams and triple graph grammars and can efficiently be implemented
in existing tools.

Keywords: Model Synchronization · Multimodelling · Multidirectional
Transformations (MX) · Inter-Model Consistency · Model Merging ·
Graph Diagrams · Triple Graph Grammars · Category Theory

1 Introduction

Conceptual models, i.e. abstract specifications of the system under development,
are recognized to be of major importance in software engineering [52]. Repre-
senting the whole system in a single global model is generally unfeasible, hence,
different teams design and maintain several models which focus on different
aspects of the system. This collection of inter-related models is often referred to
as a multimodel. A rigorous use of these models within the engineering process
eventually requires consistency management of multimodels. This is because
the collection of models must obey global consistency rules and as models are
inevitably subject to change, global consistency becomes an issue [18].
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Model Synchronization represents a means to maintain global consistency of
inter-related models by combining consistency verification with (semi-)automatic
consistency restoration. The cross-disciplinary research field Bidirectional Trans-
formations (BX) [10] investigates such means within different communities and
it provides a number of theoretical and practical results (see [3] for a recent
survey). However, the majority of these approaches is limited to a binary setting,
i.e. keeping pairs of models consistent. Stevens [46] recognized this limitation
in her outreach to the modelling community that lead to an increased momen-
tum in this area as evident from a recent Dagstuhl seminar on Multidirectional
Transformations (MX) [9].
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Fig. 1. Inconsistent
class diagrams

One way to address multiary synchronization is to
consider it as a network of well-understood binary synchro-
nization problems. However, not every multiary consistency
rule can be factored into binary ones [11]; e.g. the class
diagrams A1, A2 and A3 in fig. 1 are pairwise consistent
but not altogether—since class inheritance is acyclic. Thus,
multiary model synchronization is needed to keep global
consistency. Another approach to global consistency man-
agement is the model merge approach [7]: It constructs
the union of all models wherein the related elements are
identified, see lower half of fig. 1 (inter-relations given by
sameness of class’ names). Thus, global consistency can
be verified within a single artifact, the merge. However,
the major drawback of this approach, apart from requiring
additional computational overhead, is that it forgets the
origin of elements; e.g. that class C was contained in A1 and
A2 but not in A3. This is a problem if global consistency
rules depend on this containment information.

The most important information in multiary model synchronization are the
inter-relations between models and their elements. We call the latter common-
alities and cannot generally assume that they are always given by equality of
names as it was the case in fig. 1. Thus, multimodels must be extended with such
commonality information, which allows element traceability and global consis-
tency verification. Aligning models via an additional commonality structure has
some tradition, e.g. it is the foundation of Triple Graph Grammars (TGGs) [42],
a formal and mature BX approach with a focus on Model Driven Engineering
(MDE). In the TGG approach, models are considered to have a graph based
structure, i.e. there is a common underlying base modelling language and we will
also stick to this idea of a common base language.

In this paper, we propose a novel construction called comprehensive system
which serves as a foundation for various ways of multiary model management.
It is based on a simple, non-intrusive and easy-to-handle linguistic extension of
the base modelling language with commonality specifications, which allows to
work with an arbitrary number n ≥ 2 of heterogeneously typed (local) models as
one single (global) model. Moreover, we will show that we are still able to apply
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mature methods for model verification and restoration in the same way as for
single local models. Furthermore, we show that this approach is more expressive
than, and overcomes the obstacles of, the model merge approach, and that it
generalizes TGGs and graph diagrams [49] – a recent generalization of TGGs.

Before defining comprehensive systems and their properties (sect. 5 and 6),
we clarify terminology (sect. 2), introduce of a running example (sect. 3), and
provide an overview of the state of the art (sect. 4). Section 6 uses Category
Theory (CT) [5,1] to relate comprehensive systems to the TGG framework. Thus,
in order to make the paper self-contained, the required theoretical background
and proofs for this section are contained in Appendix A and B.

2 Preliminaries: Multimodelling

Every fast moving research field is prone to produce separate terms for the same
concepts. Thus, we begin with a short definition of the most important terms in
multi-model consistency management. We will stick to the imperative of MDE
[44] and consider all Software Engineering (SE) artifacts as models:

Model A model is an abstract specification of the system (or parts of it) under
development. Models are atomic elements in the multimodel consistency
management process. To be amenable for electronic processing, we assume
them to be formal, i.e. following the format of a specific modelling language.
We denote models by capital letters A,A′, A1, A2 etc.

Metamodel and Conformance Every modelling language is specified by an
artifact calledmetamodel. We denote metamodels by capital lettersM,M ′,M1,
M2 etc. Models must conform to their respective metamodel, i.e. the model
must be well-structured w.r.t. the metamodel and fulfill all constraints im-
posed on the metamodel, thus further narrowing admissible model structure.
The model is then called an instance of the metamodel. Conformance is
also called local or intra-model consistency. We denote a single constraint by
lowercase φ and a set of constraints by uppercase Φ. A metamodel with a set
of constraints Φ imposed on it will be written MΦ.

Correspondence is a relation among a set of models. It is a consequence of
commonalities (common concepts) shared by these models. A collection of
models together with a correspondence among them is called a multimodel. In
the similar way as for local models, global consistency rules can be imposed
on a multimodel. It is considered (globally) consistent, if all local constraints
and global consistency rules are fulfilled. Consistency of a multimodel is also
referred to as inter-model consistency.

Model Space A model space is a set of models together with changes among
them. In an MDE setting it can be considered to be given by a metamodelM :
The set of all instances of M together with M -respecting instance changes,
which describe how an instance A′ is the result of edits on A. We write
Mod(MΦ) to denote the respective model space.
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3 Use Case

We depict a collaborative modelling example within healthcare. More concretely,
the task is to develop ICT support for a patient referral process. A referral is
“the act of sending a patient to another physician for ongoing management of a
specific problem with the expectation that the patient will continue seeing the
original physician for co-ordination of total care” [43]. It is an important and
recurring process in the healthcare domain. Hence, ICT-support is desirable [51].

At the same time, development remains tricky since it requires multiple actors
(software vendors, government officials, hospitals and physicians) to agree on
common data structures, processes and interfaces. For our example, let us assume
that the design of the system follows a model-based approach and there are three
different models, each covering a different aspect of the system: There is a process
model A1 denoted in Business Process Model and Notation (BPMN) [33], a data
model A2 denoted as a Unified Modelling Language (UML) class diagram [35],
and a decision model A3 denoted in Decision Model and Notation (DMN) [36].

These three models are depicted in fig. 2 (ignore the cyan lines for the moment).
The central ingredient is the process model A1. It represents a simplified version
of the process developed in [51]. The process is triggered by a patient’s appeal
beginning with an introductory consultation. Afterwards the main part of the
process begins: Information about the patient and its medical history is extracted
while in parallel a consultant is selected via a business-rule activity. The
patient information is then sent to the consultant. The consultant can either
approve the referral or reject it. In the latter case, another consultant has to be
found. If a consultant accepts the referral, the process is finished.

PatientData

Patient
+ patientId: String
+ firstName: String
+ lastName: String
+ birthdate: Date
+ gender: Gender

Diagnosis
+ description: String
+ urgency: Boolean
- madeAt: Timestamp
- comment: String

Physician
+ practicionerId: String
+ speciality: String
+ address: String

of
1..1

1..1

1..1

0..*

1..*

«dataType»
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«dataType»
Date

«dataType»
Timestamp

Patient
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Fig. 2. Example models A1, A2 and A3 and their commonalities



Title Suppressed Due to Excessive Length 5

The other models in fig. 2 contain the respective data types (A2) and specify
the domain-specific behaviour of the “Select Consultant” activity (A3). The
latter is depicted as a table that assigns, for a given combination of values in
input side columns, a combination of values in output side columns, i.e. based on
diagnosis and urgency, an appropriate consultant is selected (which is identified
by a practicionerId and specialization).

All models could be edited completely independent of each other would there
not be a correspondence between them. It arises from the existence of abstractly
“the same” information simultaneously contained in multiple models. Consider
e.g. the column called diagnosis in A3, which is reflected by a process variable
in A1 (visualized by a file symbol) and an attribute named description in A2.
We call these relations commonalities and depict them via cyan lines in fig. 2.

But the arising multimodel (models A1, A2, A3 plus their commonalities) un-
derlies consistency rules [13] (see sect. 2) which define consistency of a multimodel.
For our example, assume the following consistency rules:

CR1 For every business-rule activity in A1, there must exist a corresponding
decision table in A3 and vice versa.

CR2 Every column type in A3 must refer to an existing data type in A2 with
the same name.

CR3 Every column in A3 must have a corresponding public attribute (denoted
by +) in A2 and should be reflected by a process variable in A1.

CR4 Every process variable in A1 must either be reflected by a class or an
attribute in A2.

To actually maintain consistency of A1, A2 and A3, w.r.t. CR1-CR4, we begin
by a review of the state of the art how commonalities are identified, consistency
is verified and if needed restored.

4 State of the Art

A seminal exposition of the process of multimodel consistency management is
already given in [45]. It comprises four phases: (i) Detection of overlaps (we call
them commonalities, see sect. 3, (ii) Detection of inconsistencies, (iii) Diagnosis of
inconsistencies, and (iv) Handling of inconsistencies. The first step is also called
model alignment. Many approaches do not consider an explicit diagnosis stage
and combine (iii) and (iv) into a phase called consistency restoration a.k.a. model
repair [31]. Hence, existing work can be grouped into these three categories:

Alignment The goal of model alignment is to identify relations between
models, i.e. finding their commonalities. This procedure, a.k.a. model matching,
has been studied in several domains: databases [37], ontologies [17], MDE [26],
graph transformation [16] and software product lines [53]. Automatic model
matching, in general, is NP-hard [38]. However, there may be domain-specific
heuristics [53] which exploit underlying global identification mechanisms, e.g.
social security numbers for persons or the ICD-10 ontology [54] for diseases.
Surveys on this topic can be found in [17] (focus on ontologies), [37] (focus on
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databases) and [26] (focus on MDE). Further, it is important to note that model
element matching requires that elements are transferable between models. This
is e.g. directly given within the UML or multi-viewpoint modelling as there is
a single underlying metamodel [4]. If this is not given a priori, matching on the
level of metamodels [40,12] has to preceed the matching of model elements.

Verification The goal of consistency verification is to find all consistency
violations. A recent survey on this topic is found in [25]. The focus of the
authors is on UML but the results are universal. They present four categories
to classify verification approaches: system model (SMV), universal logic (ULV),
heterogeneous transformation (HTV) and dynamic metamodelling (DMV). In
the SMV approach every model is translated into a comprehensive artifact where
the verification is executed. ULV is a variant of the former where the translation
is executed on the level of an underlying logic. HTV define translations between
each pair of models and DMV considers extensions of each metamodel with
elements from other metamodels or models to express global consistency.

Restoration A comprehensive survey about model repair approaches is
found in [31], whereas [3] is a recent survey about BX based approaches. Insights
from these surveys show that there are basically three categories of consistency
restoration approaches: programming based (PBR) approaches where consistency
and its restoration is explicitly defined simultaneously, solver based (SBR) ap-
proaches where consistency is abstractly posed as logic formula and restoration
is implemented using a solver or search-based algorithm, and finally, grammar
based (GBR) approaches such as TGGs [22], which place themselves somewhere
in between. The big majority of these approaches, however, considers binary
synchronization only. There are only few notable exceptions, e.g. the solver based
Echo [32] and the graph diagram framework [49,50].

Architecture Analyzing the underlying system architecture of these ap-
proaches, there are, in principal, two designs: We call them the network design
and the span design. Consider the multimodel as a graph where nodes repre-
sent models and edges represent correspondences (for alignment), consistency
relations (for verification) or repair functions (for restoration). In the network
design there are edges between each pair of models. In the span design the graph
has a hub-and-spoke layout, i.e. there is an additional hub-node that has an
edge towards every model. Approaches in the categories SMV, ULV and SBR
are associated with a span design since they perform a translation into a an
intermediate model, while approaches in the categories HTV, DMV and PBR are
associated with the network design because they directly act on a pair of models.
GBR approaches have used either of them.

Comparing the architecture, the network design puts the complexity on the
edges whereas the span design puts complexity on the nodes (more specifically on
a single node: the hub). The drawback of the network design is that the number
of edges grows quadratically with the number of participating models and if
consistency relations cannot be factored into binary relations, hyperedges are
required, which further increase the complexity. Another issue with this design is
the coordination of concurrent changes. The drawback of the span design is the
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additional overhead of the hub-node model, however, the hub-node provides a
means to coordinate concurrent changes.

5 Comprehensive Systems

In this section, we introduce comprehensive systems (sect. 5.1 to 5.3), which follow
a SMV-approach and mitigate the drawbacks of the span design. We will show in
sect. 5.4 that comprehensive systems are a foundation for the PBR restoration
approach and we conjecture that the same is true for SBR, because they do not
fundamentally differ from the structure of local models, such that they can be
fed into existing means for model verification and restoration. Moreover, sect. 5.5
shortly reports why our approach eliminates the model merge obstacles (see the
discussion in the introduction and fig. 1).

Before introducing comprehensive systems concretely, we want to illustrate
where they occur in typical conceptual workflows for multimodel consistency
management. Fig. 3 depicts such a workflow which is more or less informally used
in many approaches of multimodel management, e.g. [18]. It comprises the phases
mentioned in sect. 4: alignment, verification and restoration. The result of the
first stage are the comprehensive metamodel and global consistency rules imposed
upon it, and metamodel element commonalities, which are stored persistently to
avoid expensive re-computation and possible information loss, cf. motivation in
[28]. These commonalities are then used to compute the comprehensive system
under consideration, e.g. a model merge. It can be used in the subsequent phases
shown in fig. 3.

In contrast to this additional computation, our definition of comprehensive
system is based on a non-intrusive extension of existing models by commonalities
without extensive computations. Furthermore, it enables natural internalizations of
inter-relations between different local models into a single artifact. Our intention
is to demonstrate this internalization informally in this section and formalize
it in sect. 6, where we will also state that the resulting structure generalizes
triple graphs [42] and graph diagrams [49]; hence it is ready to be used in GBR
approaches, too.

Comprehensive
Metamodel
Derivation

Model Alignment Consistency Verification Consistency Restoration

Type
Commonality

Definition

Element
Commonality
Identification

/
Consistency

Rules
Formulation

Comprehensive
Model Derivation

Model
Verification  Model Repair  Effect

Localization

/

Type
Commonalities

Comprehensive
Metamodel

Consistency
Rules

Element
Commonalities

Comprehensive
Model

Violations Repairs Propagations

Fig. 3. General Multimodel Consistency Management Process
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MANUAL
SERVICE
BUSINESS_RULE

<<enumeration>>
EventType

START
END
MESSAGE

Activity

type: ActivityType

FlowNode

name: String

Gateway

type: GatewayType

Event

type: EventType

SequenceFlowPool

name: String

ProcessVariable

name: String

0..1

1..1

1..1

0..1

constraint
    control_flow

produces

consumes
message

src

trg
containees

incoming

outgoing

receiver

(a) BPMN metamodel M1

GE

owner
))

target

66GN

NAE

owner

GG

target

66DN

(b) Simplified E-graph
Signature

Fig. 4. Metamodel Example and Base Language

5.1 Typed Local Models

We begin on the level of metamodels: Fig. 4a depicts a simplified metamodel M1

of BPMN for our example. We do not endorse any specific MDE-framework and
denote metamodels in a UML class diagram-like style. Metamodels M2 and M3

for UML class diagram and DMN models can be defined in the same way as
metamodel M1 (excerpts of them are shown in fig. 5). E-graphs [14] (see fig. 4b)
give a formal interpretation to the class diagram syntax, which may serve as an
appropriate base modelling language B for our purposes, i.e. a shared linguistic
(meta-)metamodel [29]. It consists of Graph Nodes GN and Data Nodes DN
(complex and primitive types in the UML terminology), as well as Graph Edges
GE (associations) and Node Attribute Edges NAE (attributes) together with
appropriate owner and target functions. For the sake of simplicity we omitted
edge attribute edges, which are usually included in E-graphs. Every model A
must conform to a metamodel M . Since models and metamodels can be depicted
as E-Graphs, the conformance relation is a typing homomorphisms t : A→M
between the E-Graphs A and M . If, e.g. a is a flow node in A1, see fig. 2, then
t(a) = FlowNode ∈M1. Hence, model space Mod(M) is the category of E-graphs
typed over M . E-graphs are only one possible base language and we will work
with arbitrary base languages in sect. 6. Nevertheless will we use the term “graph”
to subsume all artifacts under consideration (models and metamodels). Thus, we
will use the terms (graph- and data-) “nodes” and (graph- and node attribute-)
“edges” for the contents of these graphs, see [14] for the original terminology.

If a set Φ of constraints (e.g. a set of formulas given in a specific logic) is
imposed on M , then the space is reduced to the full subcategory Mod(MΦ) of all
consistent models typed over M w.r.t. Φ. Besides UML-internal constraints (e.g.
the 1..1-multiplicity on src and tgt in fig. 4a) given in the modelling technique,
there are often attached constraints φ ∈ Φ. An example for an attached constraint
is φ :=control_flow, see the note at FlowNode in fig. 4a. This constraint defines
that every Start Event must not have any incoming SequenceFlow [33, p. 237],
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whereas an End Event must not have any outgoing SequenceFlow [33, p. 245].
Listing 1.1 shows an Object Constraint Language (OCL) [34] formulation of this
constraint.

Listing 1.1. Constraint φ:=control_flow formulated in OCL
context FlowNode inv:

self.oclIsTypeOf(Event) and self.eventType=EventType ::START) implies
self.incoming ->count () = 0

and (self.oclIsTypeOf(Event) and self.eventType=EventType ::END) implies
self.outgoing ->count () = 0

OCL is just an example of a possible means for defining attached constraints.
As we do not endorse a specific metamodelling framework and thus also not
endorse a specific technique for the definition of attached constraints, we treat
all constraints uniformly and assume that all internal and external constraints
can be modelled as diagrammatic constraints [39]. A diagrammatic constraint
φ imposed on a metamodel M possesses an “arity graph” Sφ and is imposed on
M by a scope dφ : Sφ →M (a homomorphism). The semantics is provided by a
predicate checkφ : Mod(Sφ) → Bool, which verifies whether a given structure
typed over the arity fulfills this constraint. The scope highlights a fragment (the
image of d) of metamodel M , e.g. the blue coloured fragment in fig. 4a is the
scope of the constraint φ from listing 1.1. For a typed graph t : A → M , the
verification procedure verify(t) = checkφ(query(t)) comprises two steps: First,
query forgets all elements of A not typed over the scope, then it retypes the
remaining elements w.r.t. d such that they are typed over Sφ. That is, query
implements the pullback of d and t (see Def. 5). Finally, checkφ is invoked on the
pullback result.

5.2 Extending the Base Language

As seen in sect. 3, consistency rules play a major role in multimodelling. However,
we cannot directly formalize them via the diagrammatic constraints described
above since their definition involves elements spanning multiple models. Note
that inter-relations between models arise from models sharing abstractly the
“same” real-world concepts (see the intuitive cyan lines in fig. 2). We name these
structural relations commonalities and they are also well-known in practice
as traceability links [18,41,2]. There are different interpretations of what such
a link can mean, e.g. identity, subset, extension? etc. [18]. In our framework
commonality semantics are kept abstract, i.e. considering them as any kind of
structural relation allowing us to define diagrammatic constraints in multimodels.

For example, in order to formalize CR2, we need to declare a commonality
between the terms DataType (in M2) and ColumnType in M3. In addition to
these binary commonalities in which only two terms are matched, there are
also ternary commonalities, e.g. String occurs in all three metamodels and it is
necessary to relate BPMN-term ProcessVariable with UML-term Attribute
and DMN-term Column together with their respective name- and type-features to
express CR3. These declarations may be formulated in an intuitive domain-specific
language (DSL) shown in listing 1.2.
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Listing 1.2. Type Commonalities
1 commonalities (BPMN ,UML ,DMN) {
2 relate(BPMN.String ,UML.String ,DMN.String) as String;
3 relate(BPMN.Activity ,DMN.Table) as Decision;
4 relate(BPMN.ProcessVariable ,UML.Attribute ,DMN.Column)
5 as Var with {
6 relate(BPMN.name ,UML.name ,DMN.name) as name;
7 relate(DMN.type ,UML.type) as type; };
8 relate(UML.DataType ,DMN.ColumnType) as Type
9 with { relate{UML.name ,DMN.name} as name; };

10 relate(BPMN.ProcessVariable ,UML.Class) as Entity; }

The specification in listing 1.2 extends the modelling artifacts M1,M2 and M3

and we call its syntax a linguistic extension. Each relate-statement translates
to an object, which is identified by an alias (keyword as) and which reifies the
“tupling” of terms it relates. E.g. the object Var in lines 4-7 specifies a commonality
of the triple ProcessVariable (M1), Attribute (M2), and Column (M3). Var
is an object in its own right and we call it a (commonality) representative.

However, not only the nodes (of the graphs) should be related: In listing
1.2 we see that the keyword with defines the two features, i.e. edges, type and
name of the respective graphs to be related as well. Common edges require
that their respective source and target nodes are also related, e.g. the type-
commonality entails commonality of Attribute and Column, which is already
given by the surrounding relate-statement, as well as commonality of DataType
and ColumnType (see lines 8-9). Hence, commonality specifications must preserve
edge-node-incidences.

Consequently, it is reasonable to use the same language B for commonality
representatives. In such a way, a commonality specification is itself an E-graph:
The semantic interpretation of listing 1.2 is depicted in cyan in fig. 5. The proper
linguistic extension further comprises mappings, which assign to each commonality
representative w the elements it relates. E.g. Decision is mapped to Activity
and to Table in the respective metamodels. Since the assignment syntax in the
above DSL also contains the target metamodel of the related elements (e.g. BPMN
in relate(BPMN.Activity...)), these mappings decompose into 3 projection
mappings pj :M0 →M j (j ∈ {1, 2, 3}), depicted by dotted arrows in fig. 5, e.g.
p1(Decision) = Activity ∈ M1, as well as p2(Type) = DataType ∈ M2, the
target metamodel now encoded in p’s index. Since the corresponding tuples can
be of arbitrary arity, these mappings may be partial:

p1(w
′) =⊥, p2(w′) = DataType, p3(w′) = ColumnType

if w′ = Type. Finally, the above required edge-node-incidence means that defined-
ness of pj(e) entails definedness of pj(v), where v is the source of e, and

pj(v) = source of pj(e) (1)

for all edges e in M0 (and likewise for targets).
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Fig. 5. Commonality representative metamodel M0

5.3 Metamodel and Model Commonalities

The previous section showed that a linguistic extension of the base language
with projection functions between commonality representatives and the elements
they relate yields an alignment of metamodels M1, . . . ,Mn. The result is a
comprehensive metamodel, in which commonalities are accurately specified with
the help of (a graph of) commonality representatives. Formally, we obtain a new
graph M0 and partial projections

M0 p
M
i⇀ M i. (2)

for all i ∈ {1, . . . , n}. Since all artifacts under consideration (models and meta-
models) conform to the base B, see sect. 5.1, commonalities among models
A1 ∈Mod(M1), . . . , An ∈Mod(Mn) can be encoded in the same way, i.e. there
is a graph A0 of commonality representatives together with partial projections

A0 p
A
i⇀ Ai. (3)

for all i ∈ {1, . . . , n}. Again they can be specified in the same language as in
listing 1.2, and can be stored physically, given that the modelling technique offers
means to identify elements, e.g. primary keys in a database, position in an XML
document, Uniform Resource Identificators (URIs) [6], etc.

The alignment of models A1, A2, and A3 together with their commonalities
is shown in fig. 2. Each cyan line represents a commonality representative and
each line ends at the value under the respective projection. Some of the lines
are binary, some ternary. In general, we would expect any arity, especially when
the number n of model spaces increases. The complete contents of fig. 2 is called
a comprehensive system: the cyan connections its commonalities and models
A1, . . . , An its components.
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Models Ai are typed over their metamodels, i.e. there are typing morphisms
ti : A

i →M i which can be combined to one big typing of all components. This
typing extends to A0 as well because elements aj and ak (j 6= k) of model
components Aj and Ak are relatable only if their types tj(aj) and tk(ak) are
related via a representative w ∈M0. Hence, a natural typing t0 of a commonality
representative v of aj and ak is t0(v) := w, such that

pMj (t0(v)) = pMj (w) = tj(aj) = tj(p
A
j (v)), (4)

which shows that the typing extension t0 integrates smoothly (respecting com-
monalities) into a typing of all parts of the comprehensive model, such that we
end up with a single typed comprehensive system: t : A→M .

5.4 Reusing Methods of Local Model Management

Consider the OCL example and its generalization in terms of diagrammatic
constraints in sect. 5.1. Theorem 1 in sect. 6 will show that comprehensive systems
constitute a category basically with the same properties as the base language B.
Especially, pullbacks can be computed in a similar way, see Corollary 1 in sect. 6.
Thus, we can define the consistency rules CR1-CR4 from sect. 3 as diagrammatic
constraints (φi)i∈{1,...,4}, now imposed on the comprehensive metamodel, which
treat the commonality witnesses and projections as regular nodes and edges.
Local constraints can be encoded as global constraints as well [27], such that
we obtain comprehensive system MΦ with a set Φ of constraints spanning
local model elements but also elements of the linguistic extension. Any typed
system t : A → M can then be checked against a constraint φ imposed via
scope d : Sφ → M by pullback of d and t in the category of comprehensive
systems, see Theorem 1 in sect. 6. Hence, query implementation by pullbacks
carries over from local models to comprehensive systems and we can reuse the
theory of diagrammatic constraints to verify global consistency, which e.g. can
be implemented by a straightforward translation of a respective model fragment
and constraint to Alloy [23]. This can be used to formally verify that Fig. 2 is
consistent w.r.t. CR1-CR4.

5.5 Advantages over Model Merge

A merged model is an artifact which is computed additionally from local models
Ai. Basically, it is the union of all elements of the Ai’s modulo their commonalities,
see fig. 1. E.g. in the merge of models A1, A2, A3 in fig. 2 there remains a single
node, say Diag/descr of type Var (a type in M0, see fig. 5), which represents
sameness of Diagnosis ∈ A1, description ∈ A2 and diagnosis ∈ A3.

We could implement global consistency rules on the merge by including
the merge computation in the check-function as described in the algorithm in
[27]. However, this leads to problems if the verification of a global constraint
depends on the knowledge of containment in local models. This can be seen with
consistency rule CR3 which relies om the containment of elements (in this case
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containment in A2 and A3). After merging Diagnosis and description into the
single node Diag/descr, distinguishing its original local model would no longer
be possible. In contrast, we do not loose this differentiation in comprehensive
systems and can successfully check the validity of this constraint.

6 Categorical Formalization

This section is devoted to the formalization of comprehensive systems from sect. 5.
As mentioned in the introduction, to state our main results and how comprehensive
systems relate to the TGG framework, we employ CT [5,1] because graph diagrams
and triple graphs are defined in terms of CT. For readers unfamiliar with category
theory we recall the central terminology in sect. 6.1.

6.1 Theoretical Background and Notation

A category C is a collection of mathematical objects and of morphisms, which
are means to compare objects. For a category C, the set of objects is denoted
|C| and for each pair A,B ∈ |C| the (hom-)set of morphisms from A to B is
denoted by ArrC(A,B). For each object A ∈ |C| there exists a special identity
morphism idA : A→ A. Moreover there is a neutral and associative composition
operation ◦ : ArrC(A,B)×ArrC(B,C)→ ArrC(A,C) for all A,B,C ∈ |C|. The
most prominent example is the base language of mathematics: Set, the category
of sets and total mappings. A category C is said to be small, if |C| is itself a set.
Equivalence of two categories C and D, written C ∼= D, means that the network
of objects and morphisms in C is identical to the one in D up to isomorphisms
(e.g. bijections in Set) between objects.

A functor provides the means to compare two categories C and D: It is
denoted F : C → D and maps objects of C to objects of D and morphisms
of each set ArrC(A,B) to ArrD(F(A),F(B)). Moreover, it preserves identities
and composition. F is called an embedding, if it is injective on objects of C
and injective on ArrC(A,B) for all A,B ∈ |C|. For fixed categories C and D
and functors F,F′ : C → D, a natural transformation n : F V F′ is a family
(nA : F(A)→ F′(A))A∈|C| of D-morphisms compatible with images of F and F′,
i.e. for all C-arrows f : A → B: nB ◦ F(f) = F′(f) ◦ nA. In such a way we get
a new category, the functor category DC with objects all functors from C to D
and arrows the natural transformations. Functors F : C→ Set where C is small
play a special role: F assigns to each S ∈ |C| a (carrier) set F(S) and for every
op ∈ ArrC(S, S′) a mapping F(op) : F(S) → F(S′), i.e. C is a signature (think
metamodel) that is interpreted by F (think instantiated). Hence, this is also called
functorial or indexed semantics and SetC corresponds to the class of algebras
for a signature C (instance worlds for a metamodel). E.g. objects of G := SetB
are E-Graphs, if B is the category depicted in fig. 4b (identities are omitted) and
E-Graph-homomorphisms are exactly the natural transformations. For set-based
structures, we use the notation A ↪→ B to indicate included structures (A in B)
such as subsets or subgraphs.
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Universal constructions in categories have proven to be of importance in many
software theoretical methods. Intuitively universal constructions can be described
as a generalization of meets and joins in a preorder and a more detailed exposition
is given in Appendix A. Some well known examples for universal constructions
in Set are cartesian products or disjoint unions (coproduct). It is important to
note that Set possesses all these universal constructions and thus every category
SetC does as well, where the computation of universal constructions is carried
out “pointwise”, i.e. separately for each object in C, see also page 22 in appendix
A.1, where we elaborate more on the meaning of “pointwise”.

6.2 Comprehensive System

We begin the formalization of comprehensive systems by fixing a sufficiently large
natural number n and considering a synchronization scenario with model spaces
(Mod(M j

Φj
))j∈{1,...,n}.

Definition 1 (Base Modelling Language). The base modelling language is
a small category B.

In order to distinguish between the different system components, we will work
with copies Bj of B. We let |Bj | = {sj | s ∈ |B|} and similarly opj : sj → s′j be
an arrow in ArrBj , if op : s→ s′ is an arrow of ArrB.1

Definition 2 (Comprehensive Systems, Components, Commonalities).
A comprehensive system C consists of

– Functors Cj : Bj → Set for each j ∈ {1, . . . , n}, called Components
– A functor C0 : B0 → Set determining the Commonality representatives, and
– A collection of partial functions (C0(s)

pj,s
⇀ Cj(s))s∈|B|,1≤j≤n, called projec-

tions, establishing the commonalities of C,

such that for all op : s→ s′ ∈ B and 1 ≤ j ≤ n the following statement holds:

If pj,s(x) is defined, then pj,s′(C0(op0)(x)) is defined (5)
and pj,s′(C0(op0)(x)) = Cj(opj)(pj,s(x)). (6)

Note that (5) and (6) generalize the edge-node-incidences, see sect. 5.2, which
we already semi-formalized in (1). In the sequel, the index of functors Ci will
be omitted, since it can be derived from the domain of definition. Hence, a
comprehensive system is a single functor C with domain the n+ 1 copies of B
and (n+ 1)b carrier sets, if b is the cardinality of |B|: In view of the introductory
remarks on functors in sect. 6.1, C0, . . . , Cn can be seen as n+ 1 instance worlds
for metamodel B, e.g. E-Graphs, each with b = 4 carrier sets.

1 The abbreviation “op” for arrows of the base shall indicate that B-arrows are certain
operations constituting the structure of the base language, such as source and target
operations of edges in graphs.
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The fundamental linguistic extension are the partial functions. They act
according to our example in sect. 5.2: In the tuple (p1(w), . . . , pn(w)) the pj
determine sameness of its components based on representative w.

The next definition deals with different comprehensive systems. In this case,
it is necessary to tell the respective partial mappings apart, such that we write
pCj,s, if we depict the mappings in the particular system C.

Definition 3 (Homomorphisms between Comprehensive Systems). Let
C,C ′ be comprehensive systems as defined in Def.2. A homomorphism between
comprehensive systems is a family

(fi,s : C(si)→ C ′(si))s∈|B|,0≤i≤n

of mappings compatible with arrows, i.e. ∀i ∈ {0, . . . , n},∀op : s → s′ ∈ ArrB:
f ◦ C(opi) = C ′(opi) ◦ f , and compatible with partial mappings: For all j ∈
{1, . . . , n}, s ∈ |B| and x ∈ C(s0):

If pCj,s(x) is defined, then pC
′

j,s(f(x)) is defined and pC
′

j,s(f(x)) = f(pCj,s(x)) (7)

where we write f instead of fj,s, if the indexing becomes clear from the context.

A typical example is a typing morphism t : A → M for two comprehensive
systems A and M . Then equation (7) reflects property (4), i.e. compatibility of
commonalities and typing. This can be seen in fig. 2: The complete contents of it
is a comprehensive system A typed over the comprehensive metamodel M (see
fig. 5). A0 consists of all cyan (binary or ternary) lines and pj,s assigns to a line
its line end in model Aj , where s is the respective element type (node or edge).

Proposition 1. Comprehensive Systems together with homomorphisms between
them constitute a category CS.

Proof. An identity is a family of identities, composition is composition of map-
pings fj,s. This yields neutrality and associativity. Moreover, composed homo-
morphisms are still compatible with arrows. Whereas this follows in the usual
way for op : s→ s′, transitivity of the definedness implication in (7) also yields
compatibility with partial functions. ut

6.3 Multimodel Equivalence

An alternative but closely related approach to our construction is to consider
commonalities, i.e. commonality representatives A0 together with projections
(pAj )1≤j≤n, not represented internally by means of the modelling technique but
externally as n spans of morphisms [27,48]. Let for this G := SetB, see the remarks
on functor categories in sect. 6.1. The resulting artifacts of the category in [48] is a
subcategory M of the functor category GI, where I is defined as in fig. 6 (identity
arrows of I are again omitted). It is a subcategory, because it only consists of
those functors M : I→ G, for which the images M(−j) of the top arrows in fig. 6
are monic (i.e. are monomorphisms).
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The proof of the following theorem relies mainly on
cartesian closedness of the category of small categories,
i.e. GI ∼= SetB×I (internalization) and the fact that spans
with one monic leg represent partial mappings, the middle
object of the span being the domain of definition of the
partial map. A detailed proof of the theorem is given in
appendix B.1.

Theorem 1 (Equivalence of Categories). CS ∼= M.

Corollary 1. CS possesses all pullbacks and they are computed separately for
the commonality representatives and for each component.

Proof. Follows from Theorem 1 and the fact that functor categories possess all
pullbacks, their pointwise construction (see Lemma 2) guaranteeing that spans
with one monic leg are preserved, because pullbacks preserve monomorphisms,
see fact 5 in sect. A.2. ut

Auxiliary commonality structures have been used for model synchronization
in the TGG framework [42]: Consistency relations between two model spaces
are defined declaratively by a grammar. The grammar rules are defined over
triple graphs, i.e. pairs of graphs connected by special correspondence-graphs,
which resemble structural commonalities. From the grammar rules, procedures for
consistency verification [30], model transformation [15] and (concurrent) model
synchronization [22,21] can automatically be derived. The solution space, however,
is limited to binary scenarios. Trollmann and Albayrak [49,50] generalized the
TGG framework to cope with multiple models within a graph diagram (GD)
framework. If we assume that the involved models are also objects of the graph-
like category G (see above), then graph diagrams are the objects of a functor
category GX, but with a different schema category X: It has objects |X| = R tN
and all non-identity morphisms connect a source from R (relations) to a target
from N (models). There is at most one arrow in ArrX(r,m) for fixed r ∈ R and
m ∈ N . In such a way graph diagrams, i.e. functors D : X → G can specify
relations of different arities.

They are, however, static: If r ∈ R has k outgoing morphisms with targets
m1, ...,mk ∈ N , D(r) is a k-ary correspondence relation with representatives
which relate exactly one element in each of the k models D(mj). Consequently,
the schema category has to change each time a new relation is added!

Graph diagrams (GD) subsume TGGs, which have schema XTGG := 1
s←

0
t→ 2, i.e. R = {0} and N = {1, 2}. Computations of triple graphs (and graph

diagrams) during rule application as well as decomposing GD rules for forward
and backward transformations are based on pushout constructions in GX. In
the rest of the section we show that our framework is more general than graph
diagrams in that there is an embedding functor T : GX → CS, the translation
functor, which preserves pushouts and hence is able to replay all GD computations
in our framework, yet being able to cope with new relations without changing
the schema category.
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We use the following notations: For a morphism f : A→ B in a category C we
write A = dom(f) and B = codom(f) for its domain and codomain and we use
the shorthand notation ArrC(_, B) := {f ∈ ArrC | codom(f) = B}. We write∐
i∈I Di to depict the coproduct of a collection (Di)i∈I of G-objects. Note that a

collection (Di
fi→ D)i∈I of morphisms yields the morphism

∐
i∈I fi :

∐
i∈I Di → D

by the universal property of coproducts, i.e. the morphism, which acts as fi on
each Di (see AppendixA.1).

By Theorem 1, it suffices to define a functor from GX to M. The composition
of this functor with the equivalence will yield the desired result. This functor
will also be called T. Let a schema category X for graph diagrams be given with
|X| = R ]N and let n be the cardinality of N . Without loss of generality, we
assume N = {1, . . . , n}. Let D be a graph diagram, then we define a multimodel
M := T(D) intuitively as follows (recall the multimodel schema in fig. 6): The
model components of N are the same as those of D, the commonality specification
M(0) is the disjoint union of all relations in D, the middle objects M(−j) are
the union of those relations, the model D(j) participates in:

M(j) := D(j) (Models are untouched)
M(0) :=

∐
r∈RD(r) (Coproduct of all relations)

M(−j) :=
∐
f∈ArrX(_,j) D(dom(f)) (Participating Relations of D(j))

for all j ∈ {1, . . . , n}. Furthermore,

M(j) =
∐
f∈ArrX(_,j) D(f) (Projections)

M(−j) :
∐
f∈ArrX(_,j) D(dom(f)) ↪→

∐
r∈RD(r) (Domains)

Hence projectionsM(j) are the unions of the domains of those relating morphisms
that have target D(j) and inclusions arise from the fact that coproducts in the
above definition of M(−j) (taken over some relations) are always subgraphs of
the complete coproduct M(0) (which is taken over all relations).

M0 ν *4

µ


�

M1

µ′


�
M2 ν′ *4 M3

Fig. 7. Pushout in M

The definition of T on arrows is straightforward
and we give it only informally: If n : D V D′ is an
arrow between graph diagrams, then (1) T(n)i is a
morphism which acts in the same way as ni on D(i), if
i > 0, (2) it amalgamates the actions of n on relations,
if i = 0, which (3) naturally restricts to the respective
actions, if i < 0. It is then easy to see, that ν := T(n)
is again a natural transformation.

Theorem 2. Functor T : GX → CS is an embedding and preserves pushouts.

We give a detailed proof of this theorem in appendix B, already mention here
that the proof cannot rely on pointwise pushout construction alone: Given a span
(ν, µ) in M as in fig. 7, pointwise pushout construction may fail to belong to M!
E.g. if ν and µ are arbitrarily given, then M3 in fig. 7 may not be admissible for
M because the mapping M3(−j) may fail to be monic, an effect already studied
in [28, Ex.6.]
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Instead our proof uses the fact that naturality squares in ν are pullbacks,
if ν is in the image of T. Then hereditariness of pushouts in G (see appendix
for a definition) yields admissibility of M3 and nevertheless allows for pointwise
pushout construction (see AppendixB). We obtain as a consequence:

Corollary 2. Every sequence of rule applications in GX has a unique represen-
tation of corresponding rule applications in CS and hence can be replayed in the
general framework of comprehensive systems. ut

7 Conclusion, Related Work and Future Plans

Our work can be summarized by the slogan “from many models to one model”:
Multimodelling is addressed by a construction that yields a single artifact, where
existing means for consistency verification and restoration can be reused. Over
many years such global artifacts were computed via merging [40,7,38,12], which
poses several difficulties especially if the verification of a global constraint de-
pends on the knowledge of which local model the elements came from. Hence,
we proposed comprehensive systems that mitigate issues with the former and
represent a generalization of graph diagrams and triple graphs—alternatives to
our approach. Comprehensive systems stress the utility of partial mappings in
commonality specifications, which have been promoted in [48] and were also
picked up in [28].

Related work on multimodel consistency management was surveyed in sect. 4.
Thus, at this point we mainly want to place our contribution in this landscape.
Our approach can be considered as a structural one and is in tradition with other
approaches based on traceability links. Recent other representatives in this line
are [18], which uses binary links to relate different artifacts in a practical scenario,
and [24], which develops a language, similar to ours, for expressing commonalities
for global consistency restoration. All these works share the requirement for a
common meta-metalanguage: In our case, given by graph-like structures (presheaf
topoi). A rather different approach is the framework proposed by Stevens [47]:
It considers consistency restoration to be performed locally by a builder. The
concrete implementation of the builder is up to the user and thus there is
no requirement for a common meta-metalanguage. The global coordination of
multiple builder is handled by the framework, controlled by an orientation model.
Comparing Stevens approach to structural approaches, the former is more abstract
and thus allows more directions for tooling implementation, whereas structural
approaches allow formal analysis of the nature of consistency rules. It will be
worthwile to investigate the relationship between both approaches in the future.

This paper provides the framework for performing multi model consistency
management by reusing existing restoration techniques. We plan to address the
momentary lack of practical evidence by investigating model repair [31] as the
next step. Being conceptually close to TGGs, grammar-based approaches seem
a natural fit but we plan to experiment with solver-based approaches as well,
further taking into account: Human interaction possibilities and learning.
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A Categorical Universal Constructions

In order to make the paper self-contained we supply this work with an appendix
to elaborate more on the categorical constructions used throughout this paper
and their respective properties. The following contents are based on [1,5].

A.1 Coproducts

Coproducts a.k.a. sums provide means to collect a set of objects and work with
them uniformly, cf. type abstraction in programming.

Definition 4 (Binary Coproduct). Let C be a category and A,B ∈ C be
objects. A binary coproduct of A and B is given by an object A + B and two
coproduct injection morphisms ιA : A→ A+B and ιB : B → A+B such that
for all pairs of C-morphisms f : A→ C and g : B → C with C ∈ C there exists a
unique morphism [f ; g] : A+B → C such that [f ; g] ◦ ιA = f and [f ; g] ◦ ιB = g,
visualized in the following diagram:

C

A+B

[f,g]!

OO

A

ιA

<<

f

99

=

B

ιB

cc

g

ee

=

The mediating morphism [f ; g] basically acts like f and g via case distinction.
If a category C has coproducts of arbitrary arity then there is a special nullary
coproduct, the initial object 0, that has unique morphisms 0A : 0 → A into
every object A ∈ |C| and it is neutral w.r.t. binary coproducts, i.e. A+ 0 ∼= A
in categories SetB. A multi-ary coproduct is then given by multiple applications
binary coproducts as coproducts are associative ((A1+A2)+A3

∼= A1+(A2+A3))
and commutative (A1 + A2

∼= A2 + A1). The (multi-ary) coproduct over an I-
indexed family of C-objects (Ai)i∈I is denoted (

∐
i∈I Ai, (ιi : Ai →

∐
i∈I Ai)i∈I)

and the mediating morphism for a family of morphisms (fi : Ai → C)i∈I by∐
fi :

∐
i∈I Ai → C.

Fact 3 (Coproducts in Set). Set has all coproducts. A binary coproduct in Set
is given by disjoint union A ] B := {(i, x) | (x ∈ A ∧ i = 1) ∨ (x ∈ B ∧ i = 2)}
for A and B being sets. The initial object 0 in Set is the empty set ∅. ut

Pointwise Construction: We say that a universal object (e.g. a coproduct)
can be constructed “pointwise” in SetB, if it is constructed separately for each
B-obejct, e.g. in the case of E-Graphs separately for the set of graph nodes, the
set of attribute nodes, the set of graph edges, and the set of node attribute edges.
An example is the proof of the following lemma.
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Lemma 1 (Coproducts in SetB). Every functor category SetB has coproducts
due to the fact that Set has all coproducts and we can construct them pointwise
in SetB.

Proof. Let F and G two objects in SetB and consider the following family of
diagrams for a morphism f : A→ B ∈ ArrB

F(A)

F(f)

��

ιF(A)

&&

G(A)
ιG(A)

xx

G(f)

��

F(A) +G(A)

F(f)+G(f)!

��

F(B)
ιF(B)

&&

G(B)
ιG(B)

xx

F(B) +G(B)

The coproduct of F and G for objects A,B is given by constructing the respective
coproducts F(A) + G(A) and F(B) + G(B) in Set, the morphism mappings
(F+G)(f) (dotted line) arises uniquely from the universal property of coproducts.

ut

A.2 Pullbacks

A pullback can be seen as the categorical version of an inner join: two structures
A and B are queried where they coincide on a common structure C.

Definition 5 (Pullback). Let C be category and a co-span of C-morphisms
A

a→ C
b← B be given. The pullback of a and b is given by the span A

πA←
A ×(a,b) B

πB→ B such that a ◦ πA = b ◦ πB and for all pairs of C-morphisms
f : D → A and g : D → B such that b ◦ g = a ◦ f and there exists a unique
morphism 〈f, g〉 : D → A×(a,b) B such that πA ◦ 〈f, g〉 = f and πB ◦ 〈f, g〉 = g,
visualized by the following diagram:

D g

##

f

%%

=

=

〈f,g〉!
$$

A×(a,b) B
πB //

πA

��

B

b

��

A
a

// C

Fact 4 (Pullbacks in Set). Set has all pullbacks: Given two mappings f : A→
C and g : B → C with same codomain the pullback A ×(f,g) B is given by the
fibred product A×(f,g) B := {(a, b) | a ∈ A, b ∈ B, f(a) = g(b)}. ut
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Lemma 2 (Pullbacks in SetB). Every functor category SetB has pullbacks due
to the fact that Set has all pullbacks and we can construct them pointwise in SetB.

Proof. Let F,G and H be objects in SetB and ν : F V H and µ : G V H
morphisms in SetB. Consider the following cube for some f : A→ B ∈ ArrB:

F(A)×(µ,ν) G(A)

µ′A

ww

ν′A //

(F×(µ,ν)G)(f)!

��

G(A)

µA
{{

G(f)

��

F(A)

F(f)

��

νA
// H(A)

H(f)

��

F(B)×(µ,ν) G(B)
ν′B //

µ′B

ww

G(B)

µB
{{

F(B)
νB

// H(B)

The pullback of µ and ν for objects A and B is given by constructing the respective
pullbacks F(A) ×(µ,ν) G(A) and F(B) ×(µ,ν) G(B) in Set along (µA, νA) and
(µB , νB) respectively, the morphism mapping (F×(µ,ν) G)(f) (dotted line) arise
uniquely from the universal property of the pullbacks in the bottom face of the
cube. ut

Finally, a straightforward, but elementary proof yields

Fact 5 (Pullbacks in Set). If a is a monomorphism in the diagram of Def. 5,
then πB is a monomorphism, as well. ut

A.3 Pushouts

A pushout can intuitively be described as gluing of two structures at a defined
interface.

Definition 6 (Pushout). Let C be a category and a span of C-morphisms
A

a← C
b→ B be given. The pushout of a and b is given by the co-span A

ιA→
A +(a,b) B

ιB← B such that ιA ◦ a = ιB ◦ b and for all pairs f : A → D and
g : B → D there exists a unique morphism [f ; g] : A+(a,b) B → D such that
[f ; g] ◦ ιA = f and [f ; g] ◦ ιB = g, visualized in the following diagram:

C
b //

a

��

B

ιB

�� g

��

=A

f //

=

ιA
// A+(a,b) B

[f,g]!

$$
D
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Fact 6 (Pushouts in Set). Set has all pushouts: Given two mappings f : C → A
and g : C → B with same domain, consider a relation ∼ on A ] B, defined as
follows (ιA and ιB are the embeddings into the disjoint union A ]B)

a ∼ b iff ∃c ∈ C : ιA(f(c)) = a ∧ ιB(g(c)) = b

and ≡ the least equivalence relation containing ∼, then the pushout of f and g is
given by A+(f,g) B := (A ]B)/≡. ut

Lemma 3 (Pushouts in SetB). Every functor category SetB has pushouts due
to the fact that Set has all pushouts and we can construct them pointwise in SetB.

Proof. Dual to the proof of Lemma 2. ut

B Proofs of Theorems

B.1 Theorem 1

Proof. (of Theorem 1) Because I contains 2n+1 objects, the cartesian product of
B and I in the category of small categories has 2n+1 copies B−n, . . . ,B0, . . . ,Bn
of B together with arrow spans

s0 s−j
(ids,−j)

oo
(ids,j)

// sj

for each j ∈ {1, . . . , n} and for each s ∈ |B| (recall the notation si introduced
after Def.1). Hence SetB×I are functors F, which simultaneously act as 2n + 1
functors F : Bi → Set together with total functions F(op, idi) within each F(Bi)
(−n ≤ i ≤ n). Moreover, we obtain spans

F(s0) F(s−j)
F(ids,−j)

oo
F(ids,j)

// F(sj)

of total functions for each s ∈ |B| and all j ∈ {1, . . . , n} connecting F(B−j) with
F(B0) and with F(Bj), resp.

The crucial fact now is cartesian closedness of the category of small categories,
cf. [1], 27.3 (e), i.e. SetB×I ∼= (SetB)I. Intuitively, this means that a functor with
two arguments (of type B and I, resp.) can be curried, i.e. it can be interpreted
as a family of functors, each of which has one argument of type B, the family
varying over a parameter of type I. Since we defined G = SetB, this yields

SetB×I ∼= GI

Moreover, the construction in [1] shows that this equivalence restricts to an
equivalence between

– the subcategory of SetB×I of those functors C : B× I→ Set, for which the
images of (ids,−j) ∈ ArrB×I (left arrow in the above span) are inclusions,
and
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– the subcategory M of GI.

The former, however, specifies n spans

C(s0) C(s−j)? _
C(ids,−j)

oo
C(ids,j)

// C(sj)

for each sort s ∈ B, i.e. partial maps pj,s := C(ids, j) : C(s0)⇀ C(sj). Further-
more, composition is defined componentwise in product categories, for example

(ids′ , j) ◦ (op, id−j) = (op, j) = (op, idj) ◦ (ids, j) (8)

which shows that functions C(op, idj) are compatible with partial maps pj,s, cf.
(6). Finally, (5) is a consequence of componentwise composition for a similar
equation as (8), j replaced by −j. Hence CS ∼= M, as desired. ut

B.2 Theorem 2

Proof. (of Theorem 2) An immediate consequence of the definitions of M in
terms of coproducts is that T is injective on objects and on morphism sets, hence
an embedding, such that it remains to show preservation of pushouts. Let for this
a graph diagram pushout (left square in Fig.8) and its image under T (middle
part) be given:

D0 n *4

m


�

D1

m′


�

M0 ν *4

µ


�

M1

µ′


�

M0(i)
νi //

µi

��

M1(i)

µ′i
��

D2 n′ *4 D3 M2 ν′ *4 M3 M2(i)
ν′i // M3(i)

Fig. 8. Pushout Preservation

As mentioned before pointwise pushout construction of a span in M may fail
to belong to M! This obstacle can be overcome by Lemmas 4 and 5. They show
that it is still possible to construct pushouts of spans pointwise in M, if the span
is an image of functor T. Hence it suffices to show that the right squares in Fig.8
are pushouts in G for all i ∈ ArrI. This is, however, clear from the definition
of T for i > 0 (because models are untouched and the left square is a pushout
(hence pointwise pushouts) by assumption). For i ≤ 0, all four objects in the
right square are coproducts over a certain indexing set I (I = ArrX for i = 0
and I = ArrX(_, j) for i = −j < 0), where the coproduct amalgamates relation
graphs of the graph diagrams (index r ∈ R). Since

∐
is a functor from GI to

G, which is left-adjoint to the diagonal functor (cf. [5, Ex.13.2.4]), it preserves
colimits, hence all squares are pushouts, because in the left square there are
pointwise pushouts separately for each relation index r ∈ R. ut
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M0(0)
ν0 // M1(0)

M0(−j)
ν−j
//

� ?

M0(−j)

OO

M1(−j)
� ?

M1(−j)

OO

(PB)

Fig. 9. Naturality Squares as Pullbacks

B.3 Auxiliary Results

Lemma 4. If the situation in Fig.9 arises from the imageM0 ν→M1 := T(D0 n→
D1) of some natural transformation n between graph diagrams, then the square
is a pullback.

Proof. The definition of M0(−j) can also be written

M0(−j) :
∐
r∈R

A0
r ↪→

∐
r∈R

D0(r)

with A0
r = D0(r), if there is f ∈ ArrX(_, j) and r = dom(f), and A0

r = 0 (the
initial object, see sect. A.1, i.e. the empty graph) otherwise, because X + 0 ∼= X
in G, see sect. A.1. Similarly, this inclusion can be extended for M1. In both
cases the summandwise squares

D0(r)
nr // D1(r)

A0
r

nr or id0 //

id or 0D0(r)

OO

A1
r

id or 0D1(r)

OO

are pullbacks, such that it suffices to show that two pullback squares in G always
add up to a pullback square of their coproducts, cf. fig. 10.

A1
h1 // B1

(PB)

A2
h2 // B2

⇒(PB)

A1 +A2
h1+h2 // B1 +B2

(PB)

C1
h′1

//

k′1

OO

D1

k1

OO

C2
h′2

//

k′2

OO

D2

k2

OO

C1 + C2
h′1+h

′
2

//

k′1+k
′
2

OO

D1 +D2

k1+k2

OO

Fig. 10. Coproducts of pullbacks

This can be demonstrated as follows: G is known to be extensive, i.e. the
functor + : G ↓ B1 ×G ↓ B2 → G ↓ (B1 +B2) between comma categories is an
equivalence of categories, its inverse is taking pullbacks along coproduct injections
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[8]. This adds pullbacks adjacent on the right of the two left pullbacks in fig. 10
and, by pullback composition [5], we obtain two pullbacks with the arrow k1 + k2
as right vertical arrow. Since G is a topos [19], it can be shown that these two
then add to the right pullback in fig. 10, see §5.3. in [19]. ut

For the proof of the following Lemma, a definition is needed:

Definition 7 (Hereditary Pushout). A pushout like the top face in the cube
in Fig.11 is called hereditary, if in any commutative cube as in Fig.11 with back
and left face pullbacks and vertical front left and back right arrow monomorphisms,
the following equivalence holds: The bottom face is a pushout if and only if (1)
the two front faces are pullbacks and (2) the vertical front right arrow (the dashed
arrow in Fig.11) is a monomorphism.

Lemma 5. If in a diagram as in the middle of Fig.8, natural transformations ν
and µ have pullbacks as naturality squares w.r.t. arrows −j ∈ ArrI (in Fig.9 this
is shown for ν), then the pointwise constructed pushouts yields M3 ∈ |M| and
the pullback condition also holds for ν′ and µ′.

Proof. Consider the commutative cube which arises from extracting all images
of −j ∈ ArrI under the functors M0, . . . ,M3 and the involved components of
natural transformations ν, ν′, µ, µ′, cf. also Fig.8.

M0(0)

µ0

yy

ν0 // M1(0)

µ′0yy

0 M2(0)
ν′0

// M3(0)

M0(−j)
� ?

M0(−j)

OO

ν−j
//

µ−j

yy

M1(−j)

µ′−jyy

� ?

M1(−j)

OO

−j

−j

OO

M2(−j)
� ?

M2(−j)

OO

ν′−j

// M3(−j)

M3(−j)

OO

Fig. 11. Commutative Cube

The two back faces are pullbacks by assumption and top and bottom faces
are pointwise pushouts. [20] show that all G-pushouts are hereditary, i.e. the
unique mediator (dashed arrow in the cube) becomes a monomorphism and the
two front faces are pullbacks. Since the pushout in the bottom can be chosen
such that this monomorphism is an inclusion, the first part of this statement
shows that M3 ∈ |M|, whereas the second part shows that the pullback condition
is transferred to ν′ and µ′, as well. ut
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