
Fachhochschule für die Wirtschaft Hannover

– FHDW –

LOMF2

Participants:

HFP110 ::= {Thomas Bremer, Jonas Büth, Ste-
fan Christian, Sönke Küper, Benjamin
Rogge, Roman Smirnov }

HFP412 ::= {Alexander Bellhäuser, Björn Boden-
sieck, Malte Kastner, Thimo Koenig,
Stefan Pietsch, Stefanie Rademacker,
Marius Tempelmeier, Niklas Walter,
Christin Weckbrod, Patrick Wolf }

HFP414 ::= {Henrik Herwig, Lisa Leitloff, Timo
Lorenz, Marius Schultchen, Florian
Selent, Sascha Sternheim, Patrick
Stünkel }

Kindly supported by:

Prof. Dr. Michael Löwe

Version:

October 10, 2015

Abstract

This paper describes the second version of the programming language LOMF (Less Over-
head, More Fun). The second version (LOMF2) is based on the concepts of category theory.
The goal is to develop a strongly typed programming language that is an abstraction of
today’s commonly used programming languages (e. g. Java, C#, C etc.). Therefore the
document gives an introduction into the syntax and semantics of the language. Further-
more the concepts for implementing the integrated development environment (IDE) are
described within this document. Against the goal to create a more abstract language in
comparison to commonly languages today, this document does not consequently compare
LOMF2 with other languages directly. Instead it tries to implement all common constructs
of actual languages such as specialization, sums (e. g. abstract types or anonymous ones
like throws A, B, C in Java), products (e. g. structures, classes etc.), polymorphy (like
in object oriented languages) and so on.

At first instance LOMF2 should be a language for teaching programming principles in
the bachelor studies in the areas of informatics. So the chapter 2 should also give a short
introduction in the syntax and semantics of the programming language. All other chapters
deal with implementations of different parts like IDE, compiler, etc.

Contents

1 Introduction 1

2 Language 2
2.1 Syntax . 2

2.1.1 Grammar . 3
2.1.2 Keywords . 6

2.2 Semantics . 6
2.2.1 Types . 6
2.2.2 Type Hierarchy . 7
2.2.3 Functions . 8
2.2.4 Anonymous Types . 9
2.2.5 Built-in Types and Functions . 10

3 Model 13
3.1 Type . 13

3.1.1 Type Expressions . 14
3.2 Functions . 16

3.2.1 Function Expressions . 16
3.2.2 Operations . 19

3.3 Error Model . 19

4 Evaluator 20
4.1 Evaluation Algorithms . 21

5 Infrastructure (IDE) 23
5.1 Scanner, Parser & Checker . 23
5.2 Checker Infrastructure . 23

5.2.1 Service . 23
5.2.2 Tasks . 23

5.3 GUI . 29

I

6 How-to 31
6.1 Add New Built-in Type . 31

6.1.1 Initial Steps . 31
6.1.2 Further Steps for Abstract Types . 31
6.1.3 Further Steps for Constructable Concrete Types 32
6.1.4 Further Steps for Non-Constructable Concrete Types 32
6.1.5 Add BuiltInType to Model . 32

6.2 Add New Built-in Function . 33

7 Outlook 34

II

1 Introduction

This paper documents the process of LOMF2, which is developed by the master courses
HFP110, HFP412 and HFP414 of the FHDW Hannover. Each course realized different
parts of this project. Some examples are the following:

• User interface

• Syntax checker

• Type checker

• Evaluation

• Coercer

• Anonymous functions

• Built-in types/functions

To ensure the best development results and to allow the observation of the development
process, the LOMF2 project is configured in the FHDW internal Jenkins Continuous Inte-
gration Server. Checkstyle1 and findbugs2 checks will be applied on every build for higher
code quality. The test-coverage will be checked via Cobertura3 to reflect the test qual-
ity as well as the general coverage. The Jenkins server observes the SVN directory and
automatically triggers the build process on changes.

The LOMF2 sources and this documentation are open source and available from the FHDW
internal SVN system via the address https://fhdwdev.ha.bib.de/svn/lomf2. The SVN
directory is world-readable, write access can be requested via email.

1http://checkstyle.sourceforge.net
2http://findbugs.sourceforge.net
3http://cobertura.sourceforge.net

1

https://fhdwdev.ha.bib.de/svn/lomf2

2 Language

At first we would like to take a closer look at the language of LOMF2. Therefore we begin
introducing the specified syntax and conclude with the semantics in section 2.2.

2.1 Syntax

The syntax of LOMF2 is based on expressions known from mathematical esp. categorial
theory constructs4. For example [(A, B) --> C] defines a signature of a function (mor-
phism) which maps values of the product of the types (objects) A and B to a value of type
C.

In LOMF2 it is basicly possible to define types and functions in expressions which end
with a semicolon. Usually each type has a unique identifier (respectively a name) and a
defining constructor expression. Specialization between types is possible in both directions:
upwards by using the keyword specializes and downwards generalizes. Abstract
types are marked with the keyword abstract. It is possible to define specializations and
generalizations between non abstract types, then it is mandantory to specifiy a coercer as
a function expression that converts between the two types (see below).

The following example for a type hierarchy shows the definition of the natural numbers
Card with a Null-type and the successor type Succ which contains the previous number:

abstract type Card;

type Null () specializes Card;

type Succ (Card) specializes Card;

Beside the named types one can use anonymous types. Here we differentiate between
products and sums. Products are defined between (and). For sums { and } are used.
Anonymous types are used in signatures and function expressions.

4A good introduction to category theory can be found in: (R. Goldblatt) Topoi - the Categorial Analysis
of Logic, Elsevier 1984

2

With the specified types it is possible to define functions which operate on these types.
Each concrete function has a name as identfier, a signature and a function expression. The
signature consists of domain and codomain. In contrast to concrete functions, abstract
functions ommit the function expressions.

Function expressions are usually serialized calls of functions or the creation of anonymous
types. Each call or creation is separated by a whitespace character “ ”. A call uses the
previous result as input for the next call. For example let f be a function with signature
[A --> B] and g a function with signature [B --> C]. If the expression f g is applied
on an A-value, firstly f will applied on this value and pass its result (which is of type B)
to g5.

To extract one component of a product a projection is used. The syntax is “.” followed
by a natural number (including zero) which defines the position of the component to be
projected in the product e. g. (A, B) .0 projects the first component A. To improve
the usability dealing with projections, while the user haven’t to remain the order of the
components of the product, it is possible to name the components of a product type. The
name have to be written in front of the type. The syntax is the name followed by “:”.It
is important, that the components of one product have different names. Projections with
the position work also for the product types with named components. Furthermore it is
possible to extract the components only with their name. In this case no “.” is needed.
Additionally it is possible to name the components of an anonymous product. In this case
the projections with the name of the components need to have an leading “.” before the
name. The rest works in the same manner as the product types. But it is important to
know, that names in anonymous products are only valid until the next “}”. Furthermore
LOMF2 supports execution of two or more calls concurrently. This is realized by a product
function expression like <f, g>.

The following example shows the definition of the addition on the previously defined
natural numbers.

function +[(Null, Card) --> Card] ::= .1;

function +[(Succ, Card) --> Succ] ::= ((.0.0, .1)+) Succ;

2.1.1 Grammar

For the context-free grammar, we use the following notation based on Backus-Naur form:
(a) Non-terminal symbols are enclosed by < and >, terminal symbols are written between

5Note: The expression requires an input of type A

3

‘ and ’. (b) The symbol | denotes the choice (sum). (c) The suffix ∗ means possible
empty list of its prefix and ∗(‘,’) means possible empty list of items with ‘,’ as delimiter.
(d) The symbol ? indicates optional occurrences. (e) If two symbols in a rule’s right-hand
side are separated by a blank, white-space is allowed or necessary between the two parts.
If there is no blank, it indicates that white-space between the parts is not possible.

Table 2.1: Grammar syntax
Semantics Syntax
(00) Program (<T> | <F>)∗

(01) T(ype) <AT> | <CT>
(02) A(bstract)T(ype) ‘abstract’ ‘type’ <It> <TO>∗

‘;’
(03) T(ype)O(rder) <S> | <G>
(04) S(pecialization) ‘specializes’ <It>
(05) G(eneralization) ‘generalizes’ <It>
(06) C(oncrete)T(ype) ‘type’ It<FPTE> <TOC>∗ ‘;’
(07) F(lat)P(roduct)T(ype)E(xpression) ‘(’ (<Ip> ‘:’)? <It>∗(‘,’) ‘)’
(08) T(ype)O(rder)C(oercer) <SC> | <GC>
(09) S(pecialization)C(oercer) <S> ‘::=’ <FE>
(10) G(eneralization)C(oercer) <G> ‘::=’ <FE>
(11) F(unction) <AF> | <CF>
(12) C(oncrete)F(unction) ‘function’ <If> <FTE> ‘::=’

<FE> ‘;’
(13) A(bstract) F(unction) ‘abstract function’ <If>

<FTE> ‘;’
(14) F(unction)T(ype)E ‘[’ <TE> ‘-->’ <CTE> ‘]’
(15) T(ype)E(xpression) <It> | <FTE> | <LTE>
(16) L(ist)T(ype)E(xpression) <PTE> | <STE>
(17) P(roduct)T(ype)E ‘(’ (<Ip> ‘:’)? <TE>∗(‘,’) ‘)’
(18) S(um)T(ype)E ‘{’ <TE>∗(‘,’) ‘}’
(19) C(odomain)T(ype)E <It> | <CLTE>
(20) C(odomain)L(ist)T(ype)E <CPTE> | <CSTE>
(21) C(odomain)P(roduct)T(ype)E ‘(’ <CTE>∗(‘,’) ‘)’
(22) C(odomain)S(um)T(ype)E ‘{’ <CTE>∗(‘,’) ‘}’

A simple example of a type definition can be found in figure 2.1. The same for a function
definition is shown in figure 2.2. The figures refer to the code examples which are described
in section 2.1.

4

Table 2.2: Grammar syntax (continued)
Semantics Syntax
(23) F(unction)E(xpression) <CFE> | <PFE> | <SFE> |

<SerFE> | <AFE> | <ANFE>
(24) C(onstructor)F(unction)E <SCFE> | <TCFE> | <L>
(25) S(imple)C(onstructor)FE ‘(’ (<Ip> ‘:’)? <FE>∗(‘,’) ‘)’
(26) T(yped)C(onstructor)FE Not syntactically available
(27) P(roduct)F(unction)E ‘<’ <FE>∗(‘,’) ‘>’
(28) S(um)F(unction)E ‘{’ <FE>∗(‘,’) ‘}’
(29) Ser(ial)F(unction)E <FE>∗(‘ ’)
(30) A(tomic)F(unction)E <If> | <I> | <TI> | <FM> |

<TFM> | <Pro> | <TPro>
(31) AN(onymous)F(unction)E(xpression) ‘[’ <TE> ‘::=’ <FE> ‘]’
(32) I(dentity) ‘.’
(33) T(yped)I(dentity) <I> ‘-’ <It>
(34) F(inal)M(ap) ‘!’
(35) T(yped)F(inal)M(ap) <FM> ‘-’ <It>
(36) Pro(jection) ‘.’ (<N> | <Ip>)
(37) L(iteral) <N> | <S>
(38) N(umber) Natural number ≥ zero
(39) S(tring) ‘"’ character∗ ‘"’
(40) T(yped)Pro(jection) <Pro> ‘-’ <It>
(41) Ip Projection name declaration
(42) It Type name declaration
(43) It <UT> | <BIT>
(44) U(ser)T(ype) User defined type name application
(45) B(uilt)I(n)T(ype) See Built-In type chapter for avail-

able types
(46) If Function name declaration
(47) If <UF> | <BIF>
(48) U(ser)F(unction) User defined function name applica-

tion
(49) B(uilt)I(n)F(unction) See Built-In function chapter for

available functions

Figure 2.1: Relation between syntax and types (type definition)

5

Figure 2.2: Relation between syntax and types (function definition)

2.1.2 Keywords

As mentioned before LOMF2 uses the following keywords which should not be used as any
type- or function-identifier: abstract, function, generalizes, specializes and type

as well as the symbols !, . and -.

2.2 Semantics

As LOMF2 is a categorial programming language, most features correspond to a categorial
concept. Therefore a LOMF2 program can be thought of as a category. In the following
subsections the already mentioned features will be semantically described.

2.2.1 Types

LOMF2 is a strongly typed programming language. Types represent the objects of the
program’s category. An empty program does only contain the empty product and a few
built-in types as objects which will be introduced later on. Using these types, user defined
named types can be constructed by declaring products and sums which correspond to
the categorial concepts of products and sums. In this section product based types are
introduced.

The (short) LOMF2-program: type A(); defines a type A that can be constructed out of
an empty product. This type can be compared to a class not owning any attributes in an
object-oriented programming language (like C++ or Java).

One can declare n-ary products containing any named type contained in the program.
For each dimension of a product, there exists a projection to extract the corresponding
component out of the product. Instead of using names to identify projections, they are
numbered starting with zero. For example type P(A, B, C); defines a product of the
types A, B and C named P. Implicitly there are three projections .0,.1 and .2 defined such
that .0 applied on an element of P extracts an A element, .1 an B element and so on.

6

The definition of a type implicitly creates a constructor function which maps a product
to the defined type. Given the example from above there is a constructor function P that
maps a product of an A, a B and a C element to a product element P. Again this is similar
to a constructor of a class in an object-oriented language that has an argument for each
attribute the class owns.

Named sum based types are used to model inheritance.

2.2.2 Type Hierarchy

The type hierarchy or inheritance as used in other object-oriented programming languages
(like C++ or Java) finds its semantics in the categorial sum. As an example we define a
type Card to represent the natural numbers including zero:

abstract type Card;

type Null() specializes Card;

type Succ(Card) specializes Card;

A named sum can be defined by a specialization or a generalization. The abstract type
Card is a named sumtype. Each element of this type is either a Null or a Succ element.
It’s also possible to specify the named sum Card the other way round6:

abstract type Card generalizes Null generalizes Succ;

type Null();

type Succ(Card);

An abstract type can be compared to an interface in an object-oriented language. It is
also possible to specify inheritance between concrete types. A concrete type A generalizing
another concrete type B implies that there is a way to model each B element as an A

element. To specify how this adaption (injection) works, coercers are used in LOMF2. As
an example we define a type Integer which consists of two natural numbers modeling a
positive and a negativ part. Each Card element can be converted into an Integer element
by adding a zero as negative part.

type Integer(Card, Card) generalizes Card ::= (.,!Null)Integer;

6Note: Multiple inheritance is fully supported in LOMF2.

7

Each type can be thought of as a sum containing all of the type’s concrete subtypes
(including the type itself if it is concrete).

Besides the named types, the described category implicitly contains every finite product
and sum of objects as an anonymous type7. This allows us to define functions having
anonymous types as domain or codomain. Every constructor function is a function from
an anonymous product to a named type.

2.2.3 Functions

As mentioned above types can be thought of as objects in a category. Functions bring
morphisms into the categorial programming language LOMF2 as they are maps between
types. A concrete function consists of a name, a signature and a function expression which
defines its behaviour. An abstract function consists of a name and a signature with an
abstract domain8 only. At runtime it has to be implemented by at least one concrete
function, whose function expression will be evaluated.

Signatures

The function’s signature defines the domain and codomain of the morphism. The domain
specifies the type of the argument on which the function can be applied. The codomain
specifies the type of the result of an application of the function on an element typed in
the domain.

It is possible to define several functions with the same name, if they differ in domains.
The domains do not necessarily have to be in the same type hierachy. The following rule
must hold for all functions f,f’ with the same name: If the domain of f’ is subtype of the
domain of f, than the codomain of f’ must be subtype of the codomain of f.

Function Expressions

The function expressions are responsible for the behavior of a function. Basically a func-
tion expression is the composition of functions (resp. morphism). The composition of two
morphisms g ◦ f is denoted in LOMF2 syntax by: f g. Function expressions are strictly

7This implies that sums can be contained in a product and vice versa.
8The domain of a signature is abstract, if at least one type of the domain is abstract.

8

evaluated from left to right. The LOMF2 syntax does not allow manipulating the evalua-
tion sequence through brackets, as they are only used to define products. Therefore the
associative law for functional composition holds. A function can be applied on an element
of its domain’s type and returns an element of its codomain’s type.

Since categories contain an identity morphism for each object, these are also available
in LOMF2. The dot-operator (“.”) stands for the identity of the given argument. If an
identity is applied on an element, the element itself will be the result of the application.

The exclamation mark (“!”) denotes the final morphism to the final object9, which is the
empty product. The final morphism is used if a function without parameters should be
called. We used the final map above in the coercer function from Card to Integer to call
the constructor function Null.

2.2.4 Anonymous Types

As described above LOMF2 supports anonymous sums and products.

We already came across anonymous products while defining named types. As mentioned
above every type definition type A(B,C); implies a constructor function from the anony-
mous product (B,C) to A.

The same notation can be used to create elements of the anonymous product’s type.
Assume that f and g are functions. Then the domain of (f, g) is the intersection of the
codomains of f and g. The codomain of this “constructor” is the anonymous product of
the codomains of f and g.

A special function expression is the product map, which maps a product to another product
by calling a function on each projection of the product and implicitly constructing a new
product out of the elements returned by both functions. The product maps use the “<”,
”>”-syntax. Let m be a function having the anonymous product (A,B) as codomain and
f and g be two functions with domain A resp. B. Then the following expressions are
equivalent:

(context) m <f,g>

(context) m (.0 f, .1 g)

9Note: In a LOMF2 program the initial object (empty sum) is not available.

9

So that <f,g> = (.0 f, .1 g). Building products in both ways can be executed con-
currently.

Anonymous sums can be used in signatures or in function expressions. An anonymous
sum uses the “{“, “}”-syntax. E.g. to declare that a function f either expects a parameter
of type A or B, one can simply write: function f[{A,B}-->C] ::= ...

In function expression the anonymous sums can be used for case distinction by using typed
identities or typed projections. As an example again we look at the natural numbers Card

defined above. Assume that the context’s codomain is Card.

function f[Card --> Card] ::= !Null;

function g[Card --> Card] ::= !(Null)Succ;

(context) {.-Succ g, .-Null f}

Then the expression will return one if the context is zero and return zero if not.

Giving following code the equations {A, B} = C and (A, B) 6= D hold.

type A ...

type B ...

abstract type C generalizes A generalizes B;

type D(A, B);

2.2.5 Built-in Types and Functions

LOMF2 contains three built-in types and a set of built-in functions operating on these.

Bool

LOMF2 contains a minimum implementation of a boolean type, because it is needed either
as parameter or as result for built-in functions. The implementation is equivalent to the
following LOMF2-code:

abstract type Bool;

type True() specializes Bool;

type False() specializes Bool;

10

Nat

The built-in type Nat is isomorphic to the type Card introduced above.

abstract type Nat;

type Zero() specializes Nat;

type NextNat(Nat) specializes Nat;

The main benefit in using the type Nat is, that instead of building terms for larger numbers,
numeric literals can be used so that both of the following expressions are equal:

((Zero)NextNat)NextNat;

2;

The projection .0 is only applicable on natural numbers greater than zero and reduces
them by one.

Multiplication and addition (called by * and +) of natural numbers use the binary product
of natural numbers as domain and the natural numbers as co-domain.

function +[(Nat, Nat) --> Nat]

function *[(Nat, Nat) --> Nat]

The function less or equal (called by leq) compares two natural numbers (domain) and
returns True (co-domain) iff the first argument is less or equal than the second argument.

function leq[(Nat, Nat) --> Bool]

String

The String type takes a special role in LOMF2. It is the only type that is neither abstract
nor constructable. Elements of the type String can only be created using String literals
enclosed in “ ” or built-in functions. Therefore no projections are applicable on Strings.

Concatenation of two strings is also denoted by + but differs to addition of natural numbers
in the domain (product of two strings) and co-domain (string).

function +[(String, String) --> String]

11

Splitting of a string is implemented by split. The domain is represented by the binary
product of string and natural number. The second argument marks the position where the
first argument shall be split. The co-domain is the binary string product which contains
both parts of the split string as result.

function split[(String, Nat) --> (String, String)]

The length of a string can be determined by function size.

function size[String --> Nat]

The function contains compares two strings (domain) and returns True (co-domain) iff
the second argument is part of the first argument.

function contains[(String, String) --> Bool]

The function less or equal (called by leq) compares two strings (domain) and returns
True (co-domain) iff the first argument is lexicographical less or equal than the second
argument.

function leq[(String, String) --> Bool]

@pply Function

LOMF2 contains one special function for applying functions that are provided as parame-
ter. This function is called apply and is represented by the @ operator.

function @["<T> ([T -> X], T)" --> T]

The domain ("<T> ([T -> X], T)") of this function is the sum of all products consisting
of a function and the corresponding argument for it. The codomain of the function depends
on the provided parameters i. e. on the codomain of the function that has to be provided
as the first factor in the parameter. This behavior is also known from generic functions
in the Java programming language.

12

3 Model

In this chapter we describe essential modules of the LOMF2 datamodel. Intention of this
section is to give a basic overview of the model, such that subsequent working groups are
able to extend the existing structure in a comfortable way.

3.1 Type

The LOMF2 type system differs between built-in and user types (see figure 3.1).

BuiltInType
<JavaType>

UserType

Type

Figure 3.1: Type hierarchy

Built-in Types are types, which are created and provided at runtime by LOMF2 such as
BoolType (=̂ Boolean), NatType (=̂ natural numbers with zero), NonZeroNatType

(=̂ natural numbers greater than zero), ZeroNatType (=̂ zero) and StringType (=̂
String). These names refer to class names. The relationship between class names
and type names at runtime is depicted in table 3.1.

BuiltInTypes may be constructable like ZeroNatType and NonZeroNatType or not
constructable like String. Constructable types are concrete and posses a Construc-
torTypeExpression and a set of Projections. Strings are not constructable and can
only be created by using literals and functions. Types which are not constructable do
not provide ConstructorTypeExpression and Projections are not applicable on them.

User Types are types which are defined by the user in LOMF2 syntax. A UserType being
concrete implies that it is constructable.

13

Table 3.1: Constructable built-in types
Built-In type classname Constructor
ZeroNatType Zero
NonZeroNatType NextNat
FalseType False
TrueType True

3.1.1 Type Expressions

TypeExpression NamedTypeReference

List
TypeExpression

Sum
TypeExpression

Constructor
TypeExpression

Atomic
TypeExpression

SumOf
AllTypes

SumOf
AllNAryProducts

Figure 3.2: Type expression hierarchy

There are several expressions in order to declare the notion of a type: The TypeExpression.
All classes, that express some kind of type inherit from this class. There are two key
operations10, that every TypeExpression has to implement.

• isSuperTypeOf : TypeExpression × TypeExpression × AddToSumStrategy →
Boolean. Invoking this operation on a TypeExpression given another TypeExpression
and a AddToSumStrategy will return true, iff the object on which the operation is
invoked on is a supertype of the given TypeExpression. The AddToSumStrategy
specifies how abstract or non constructable types are handled and is explained in
the following.

• concretize : TypeExpression× AddToSumStrategy → TypeExpression. This op-
eration will return a normalized representation of the given TypeExpression. The
AddToSumStrategy specifies which subtypes will be added to the resulting Sum-
TypeExpression. Available strategies are:

– AddAllTypes adds all NamedTypeReferences to the resulting sum.

– AddOnlyConcreteTypes adds only NamedTypeReference referencing concrete
types to the result.

10Note: There are several other necessary operations e. g. visitor implementations, which are not impor-
tant in this context.

14

– AddOnlyMostGeneralConcreteTypes adds a NamedTypeReference to the result,
if the referenced type is concrete and no concrete supertype is already contained.
If a NamedTypeReference is added all already contained subtypes are removed
from the result.

– AddOnlyConstructableTypes adds only NamedTypeReference referencing a type
that posseses a constructor. Constructable types are a subset of all concrete
types which contain all concrete UserTypes and all BuiltInTypes having a con-
structor.

Atomic Type Expressions

Atomic type expressions are described as expressions, that do not contain more fine-
grained parts. Up to this point, there only is the NamedTypeReference, which represents
a reference to an explicitly defined type in a model. This expression is used to declare
domains of certain function expression, where the domain is explicitly defined (typed final
map, typed identity, typed projection).

List Type Expressions

These type of expressions are made up of list-like structures, containing an ordered list of
other TypeExpressions.

First, there is a ConstructorTypeExpression, which represents the type of a categorical
product. E.g. this this expression is used while declaring types and defining function
signatures.

Another list-like expression is the SumTypeExpression. It has the semantics of a categorical
co-product. It is widely used when calculating the domain and co-domain of functions.

Artifical Type expressions

There are certain types that are introduced internally to the model. They cannot be used
explicitly in a model.

The sum of all type expressions (SumOfAllTypeExpressions), represents the co-product of
all types available in the model which is a super type of an arbitrary other type in the
model.

15

There is the sum of all n-ary products (SumOfAllNaryProducts). This type is used to
declare the domain of an untyped projection. Since there is no explicit type given, the
domain has to be assumed as all products, which have at least as many projections as the
untyped projection suggests - thus the sum of all n-ary products.

3.2 Functions

This chapter introduces the classes used to model user functions and build-in functions
and explaines how functions are grouped to operations.

3.2.1 Function Expressions

FunctionExpression

NamedFunctionReferenceAbstractConstructor
FunctionExpression

AbstractFinalMap

AbstractIdentity

AbstractProjection
List

FunctionExpression

Sum
FunctionExpression

Product
FunctionExpression

Sequential
FunctionExpression

Atomic
FunctionExpression

Constructor
FunctionExpression

AbstractTypedConstructor
FunctionExpression

TypedConstructor
FunctionExpression

TypedBuiltInConstructor
FunctionExpression

Projection

TypedProjection

ProjectionWith
BuiltInFunction

FinalMap

TypedFinalMap

Identity

TypedIdentity

Anonymous
FunctionExpression

BuiltInFunction
Implementation

Figure 3.3: Function expressions hierarchy

The operational aspect in a model is described by function expressions. We find func-
tion expressions as the implementations of operations and as coercers between types in a
hierarchy.

We differentiate between “atomic” and “list-like” function expressions, where the list-like
expressions consist of other function expressions (see figure 3.3).

16

Atomic Function Expressions

There are different types of atomic function expressions.

A final mapping is a function, which maps a type to the empty product. With this
mapping, we can ‘forget’ a type and apply constructors, that take the empty product as
domain after the final map. There is a typed and an untyped version of the final map,
where the typed final map explicitly specifies the domain of the final map.

To bring the categorical concept of identities into the model, there are two identity expres-
sions (typed and untyped). The typed version takes as domain the specified type and has
as co-domain exactly this type. The untyped version is polymorphic so that the co-domain
is determined by the context the untyped identity is apllied to.

To access elements in a product type, there are projection expressions. Again, there are
typed and untyped versions, where the typed version specifies the domain of the projection.
A projection specifies the element which is accessed by a numerical index. The domain of
a projection is either the specified type or – in case of an untyped projection – the sum
of all products which have at least as many parts as specified in the projection plus one
(since we start counting at zero). The co-domain is the type of the accessed element. If
projections are applicable on a BuiltInType, it is equipt with a BuiltInFunction that is
used in the evaluation to determine the result of the projection on an element typed in
this BuiltInType.

To invoke a function, there are named function references. These kind of expressions
denote the invocation of an operation which is specified by the model. The domain as
well as the co-domain of these references are the sum of all domains or co-domains from
all implementations of these operations.

AnonymousFunctionExpressions are functions which can be declared anonymously within
a FunctionExpression. These anonymous function expressions consist of a function type
expression and a function expression. The semantic is similar to the command pattern
in object-oriented languages. The anonymous function expression can be passed as a pa-
rameter to another function with applicable domain and executed via the built-in apply
function (@). Anonymous function expressions can be nested arbitrarily (but it is rec-
ommended not to nest anonymous function expressions, since these constructs downgrade
the readibility of your LOMF2 code.

17

List-like Function Expressions

In order to be able to construct an element of a type, there is a constructor function
expression. There is an untyped and two typed versions. If a BuiltInType is constructable
it is equipt with an BuiltInConstructorFunctionExpression. Analogous to projections
on elements of BuiltInTypes a BuiltInFunction is used to evaluate the constructor-
application.

Since the application of an constructor function expression is semantically the application
of all expression parts to the domain, the domain is the intersection of all domains of the
expression parts. The co-domain is either the specified type in case of the typed version
or a constructor type expression made up from all co-domains of the expression parts.

To apply different functions on parts of a product simultaniously, there is the product
function expression. Its domain is a constructor type expression containing the domain
of each part of the expression, whereas the co-domain is a constructor type expression
containing all co-domains of the parts.

To execute functions sequentially, there is the sequential function expression. The domain
of this expression is the domain of the first expression part and the co-domain is the
co-domain of the last part.

With the sum function expression a conditionally execution of functions is possible. The
domain of such an expression is a concretized sum type expression containing all domains
of the expression parts. The co-domain is a sum type expression from all co-domains of
the expression parts.

Built-in Functions

To improve reusability in LOMF2 models we use built-in functions for recurrent functions
which use built-in types in their implementations. Instead of writing equivalent functions
in different models we can reuse those built-in functions, which are published to the model
by the BuiltInTypeAndFunctionGeneratorTask (section 5.2).

This version11 of LOMF2 contains eight different built-in functions that have been in-
troduced in Section 2.2.5. Section 6.2 describes how to implement additional built-in
functions.

11October 10, 2015

18

3.2.2 Operations

Functions having the same name are grouped to operations in order to objectify and
therefore describe the resulting set of functions. An operation consequently functions as
an entry point to all equally named functions. This allows for a rather simple “jump-
table” approach. Each function will be registered with its respective operation and will
stay in or change to “uncached” state while the operation set of internal functions is being
modified.

If a function call requires an updated version of the “jump-table” it uses the existing
table (operation is in cached state) or triggers a recalculation of a new table by using the
algorithm below (operation is in uncached state).

3.3 Error Model

The LOMF2 error model consists of two parts. The first part is the ModelError type
hierarchy. All subtypes in this hierarchy describe a semantic error within the model (e.g.
a missing type of a symmetric hierarchy is represented by its own subtype). Each type de-
fines an error message that will be displayed in the GUI, a CodeContainable that consists
of a subset of highlightable tokens in the model and a ModelErrorType. The ModelEr-
rorType can be one of Error, Warning, Info or Style. The types are used to allow more
precise flow-control within the checker architecture (see chapter 5.2). Also they are applied
for transportation of information in situations where the occurrence of an error does not
affect further checks.

The second part of the LOMF2 Error Model is the ModelException hierarchy. These types
are, as the name suggests, subtypes of the Java Exception and are used for technical
errors that occur during check phase. For example the getCodomain method of a Se-
quentialFunctionExpression can throw a SequenceDomainCodomainMissmatchException
if the types of domain and co-domain do not match. These exceptions will be wrapped
by the checker in a corresponding ModelError for further handling. Like the ModelError,
the ModelException includes a CodeContainable for its position description in the source
code to highlight the position of the occurrence.

19

4 Evaluator

This section describes the fundamental evaluation-mechanism for LOMF2 functions. The
following figure 4.1 shows the customized model-structure. To keep the additional com-
ponents seperate from the original Model, an abstract class AbstractModel has been
extracted. A model that is defined in the model tab of the application is parsed to a
Model object and called typeModel. A model defined in the test tab of the application is
parsed to a EvaluableModel object and uses the typeModel to evaluate its expressions.

Model EvaluableModel

AbstractModel

+evaluableFunctions: Collection<FunctionExpression>

typeModel

Figure 4.1: Evaluable Modell

All abstract operations in EvaluableModel will be implemented by delegation-pattern
using the concrete model (association typeModel see figure 4.1).

The EvaluableModel was extended by the following list of evaluable functions:

+evaluableFunctions: Collection<FunctionExpression>

Additionally a model is required that contains all evaluated values. The following figure
(4.2) shows the defined model.

Data

TypedData ApplyableFunction ConstantTypeData<T> DerivedTypeData

TypeExpression

type

elements
*

Figure 4.2: Evaluation Datamodel

20

The association Elements represents the possible projections of an evaluated expres-
sion.12

The class Data provides an abstraction for the following, four concrete ‘value-types’:

TypeData Provides a typed and evaluated value (e. g. Null).13

ApplyableFunction Represents a not yet executed function, which is the result of an
AnonymousFunctionExpression in the evaluation.

ConstantTypeData This type represents an evaluated constant value, which is typed in
a BuiltInType.

DerivedTypeData Provides an evaluated sum or product, in which the concrete type is
not determined explicitly14.

4.1 Evaluation Algorithms

RecursiveEvaluatorStackEvaluator

<<Interface>>
Evaluator

+evaluate(FunctionExpression): Data
+evaluate(FunctionExpression, Data): Data

Figure 4.3: Evaluation-Strategies

The interface Evaluator was created for the evaluation and provides the necessary oper-
ations. Entrypoint for evaluation is the following operation:

+evaluate(FunctionExpression): Data

There are two concrete evaluators: StackEvaluator15 and RecursiveEvaluator. LOMF2
uses the RecursiveEvaluator which evaluates a FunctionExpression recursively, while
the StackEvaluator does this by using a stack.

The basic evaluation of expressions will be described in the following overview (see table
4.1 below). The general evaluation works as follows:

12E. g. the type Succ(Null) contains one element of type TypedData (Null). A sum contains an element
for each summand.

13Note: At least one concrete type has to be assigned.
14Like the name DerivedTypeData suggest.
15This evaluator was created to gain the ability of developing an LOMF2-internal debugger.

21

V A A(V)

The suggest a replacement process. The expression on the left side of an arrow, will
replaced by the right side. For example in case of a product, the description in table 4.1
means, that the expression V will applied on every element of the product.

Most of the following cases require, that the evaluation remember at least parts of the V
to use them for further evaluations. To accomplish that requirement, the evaluation works
as a stack (or, as described before, recursively).

Table 4.1: Evaluation
Semantics Syntax
Projection V.i V(i)
Operation V op V methodOp(v)
Identity V. V
Terminal V! ()
Sum V {s1, . . . , sn} V {s1, . . . , sn}(v)
Product V (f1, . . . , fn) (V f1, . . . , V fn)
Constant V constant Vconstant

22

5 Infrastructure (IDE)

5.1 Scanner, Parser & Checker

The IDE infrastructure of LOMF2 consists of tree main parts. The first two parts is an
simple Scanner-Parser construct. The third part is the checker infrastructure. Here all
checks that are performed on the source code are modeled as checks that are executed in
an predefined order. This is descriped in detail in the following chapters.

5.2 Checker Infrastructure

5.2.1 Service

The model checker service provides a facility for parallel execution of model checker tasks.
Tasks can statically be registered with the service as each tasks will get called only once
sometime during the execution. In order to prepare the registered tasks order, the service
requires the tasks to provide there direct predecessors. Each task will therefore be executed
as early as possible and as late as necessary. On execution, the service executes each set
of parallel independent tasks asynchronously at waits for all tasks to call back on their
completion. Therefore the service also acts as a point of synchronisation between each
phase of parallel tasks execution and can be used to introduce changes to the model
itself.

5.2.2 Tasks

There are different tasks to perform the checking on the model, generate elements and
set references. The following figure 5.1 shows the complete sequence in which they are
executed. In this section a selection of tasks is described in detail.

23

CoercerFunction
GeneratorTask

SumFunctionExpression
CheckerTask

Generalization
ReferencerTask

Specialization
ReferencerTask

TypedFinalMap
ReferencerTask

TypedIdentity
ReferencerTask

TypedProjection
ReferencerTask

SummandsAreIdentities
CheckerTask

ProductAndConstructor
FunctionExpression

CheckerTask

FunctionTypeConflict
DeterminationTask

EvaluableFunctions
AreSequentialTask

NamedFunctionReference
ReferencerTask

CoercerAndAbstract
TypesChecker

SubType
CalculatorTask

TypeChecker
EvaluableExpression

StartFromEmptyProductTask

CoercerEndsWith
ConstructorChecker

Hierarchy
CheckerTask

Coercer
CheckerTask

SequenceDoesNotEnd
WithFinalMap
CheckerTask

CoDomain
CheckerTask

Domain
CheckerTask

DomainCoDomainSubtype
CheckerTask

Constructor
GeneratorTask

NamedTypeReference
ReferencerTask

BuiltInTypeAndFunction
GeneratorTask

FunctionNaming
ConventionChecker

Figure 5.1: Sequence of predecessors

BuiltInTypeAndFunctionGeneratorTask This checker adds the built-in types like String,
Bool, Nat, . . . and built-in functions like apply (@), addition on type Nat, . . . to the
model.

CoercerFunctionGeneratorTask This task adds a coercer as a function to the model,
such that, it can be used while evaluation and checking.

The predecessor of this task is the BaseTypeGeneratorTask.

FunctionTypeConflictDeterminationTask The FunctionTypeConflictDeterminationTask
determines all Functions and Types which are in conflict with each other. For example:

24

type A(); and function A[...] ::= ... are in conflict, because they have the same
name (i. e. A).

ProductAndConstructorFunctionExpressionCheckerTask The ProductAndConstructor-
FunctionExpressionCheckerTask checks a ProductFunctionExpression and Constructor-
FunctionExpression contains at least one part: (.0), (.0, .1), <.0>, <.0, .1> etc.
An empty ProductFunctionExpression or ConstructorFunctionExpression is not allowed.

SumFunctionExpressionCheckerTask The SumFunctionExpressionCheckerTask checks,
that a SumFunctionExpression contains at least one part. If the SumFunctionExpression
does not contain any part, an Error (i. e. EmptySumError) will be created. In the case
that the SumFunctionExpression contains only one part, an style-error (i. e. SumCon-
tainsOnePartError) will be created.

SummandsAreIdentitiesCheckerTask The SummandsAreIdentitiesCheckerTask checks,
that all summands in a implicit sum (i. e. SumFunctionExpression) start with an identity
expression. Following expressions are allowed for example:

• {.-A, .-B}

• {<.-A,.-C>,.-B}

• {.-A, .-B, .}

• etc.

Not more than one summand in an implicit sum can start with an untyped identity.

SpecializationReferencerTask The SpecializationReferencerTask sets a link (for the as-
sociation refersTo) to the specialized type in Specialization. If the model does not contain
the type, which have to be referenced, an error (i. e. MissingTypeError) will be created.

The predecessor of this task is the FunctionTypeConflictDeterminationTask.

GeneralizationReferencerTask The GeneralizationReferencerTask sets a link (for the as-
sociation refersTo) to the generalized type in Generalization. If the model does not contain
the type, which have to be referenced, an error (i. e. MissingTypeError) will be created.

The predecessor of this task is the FunctionTypeConflictDeterminationTask.

25

TypedProjectionReferencerTask The TypedProjectionReferencerTask sets the referenced
type for a TypedProjection. If the model does not contain the type, which have to be ref-
erenced, an error (i. e. MissingTypeError) will be created.

The predecessor of this task is the FunctionTypeConflictDeterminationTask.

TypedFinalMapReferencerTask The TypedFinalMapReferencerTask sets the referenced
type for a TypedFinalMap. If the model does not contain the type, which have to be
referenced, an error (i. e. MissingTypeError) will be created.

The predecessor of this task is the FunctionTypeConflictDeterminationTask.

NamedTypeReferenceReferencerTask The NamedTypeReferenceReferencerTask sets the
referenced type for a NamedTypeReference. If the model does not contain the type, which
have to be referenced, an error (i. e. MissingTypeError) will be created.

The predecessor of this task is the FunctionTypeConflictDeterminationTask.

TypedIdentityReferencerTask The TypedIdentityReferencerTask sets the referenced type
for a TypedIdentity. If the model does not contain the type, which have to be referenced,
an error (i. e. MissingTypeError) will be created.

The predecessor of this task is the FunctionTypeConflictDeterminationTask.

ConstructorGeneratorTask This ConstructorGeneratorTask adds a typed constructor (i.
e. Function) for each concrete UserType and for each constructable BuiltInType within
the model.

The predecessor of this task are: SpecializationReferencerTask, GeneralizationReferencer-
Task, TypedProjectionReferencerTask, TypedFinalMapReferencerTask, NamedTypeRefer-
enceReferencerTask and TypedIdentityReferencerTask.

CoercerAndAbstractTypesChecker This task containts two main-goals. In general co-
ercers from and to abstract types are not allowed. This means in detail, that an abstract
generalization cannot have a coercer and additionally a specialization to an abstract class
cannot have a coercer, too.

26

SubTypeCalculatorTask The SubTypeCalculatorTask calculates the subtypes for every
Type within the model.

The predecessor of this task is the ConstructorGeneratorTask.

NamedFunctionReferenceReferencerTask The NamedFunctionReferenceReferencerTask
sets all Function-references within the given model. If Function-references refer to a miss-
ing Function a MissingFunctionError is added to the model.

The predecessor of this task is the ConstructorGeneratorTask.

EvaluableExpressionStartFromEmptyProductTask Each evaluable function has to start
with !, so that the evaluation can start with the empty product.

CoercerEndsWithConstructorChecker At the moment, it is not possible to define a
arbitrary FunctionExpression as coercer, only ConstructorExpressions are allowed.

HierarchyCheckerTask The HierarchyCheckerTask checks that the subtype relation is a
hierarchy (antisymmetric).

The predecessor of this task is the SubTypeCalculatorTask.

DomainCheckerTask TheDomainCheckerTask checks the domain of the assigned Func-
tionTypeExpression. The following combinations are not allowed in a domain of a func-
tion:

• {}

• (A, ())

• {A, ()}

• etc.

A sum with only one summand and a product with only one part leads to a style-error in
the model. It is possible that the domain is an empty product (e. g. f[() --> ...]).

The predecessor of this task is the HierarchyCheckerTask.

27

CoDomainCheckerTask The CoDomainCheckerTask checks the codomain of the as-
signed FunctionTypeExpression, not allowed are:

• {}

• ()

The predecessor of this task is the HierarchyCheckerTask.

SequenceDoesNotEndWithFinalMapCheckerTask determines that every SequentialFunc-
tionExpression does not end with a FinalMap oder TypedFinalMap.

The predecessor of this task is the HierarchyCheckerTask.

CoercerCheckerTask The CoercerCheckerTask checks the coercer definitions such that:

If t′ is abstract, the (specialization representing) monomorphism is always the set inclusion.
If t′ is concrete, each concrete type t ≤ t′ needs an explicit coercer specification into t′

(completeness of concrete coercers):

If a concrete type specialises another concrete type directly, the coercer must be provided in
the appropriate syntactical clause. Transitivity is given by composition of coercers. (There
might be serveral paths. It is not checked if these paths represent the same morphism.)

If an abstract type t specialises a concrete type t′, a direct coercer is not required and
syntactically impossible. Nevertheless, all concrete (direct or indirect) subtypes t′′ of t

need a coercer into t′. These coercers can be specified in the definition of t′ (if the subtype
exists prior to the definition of t′) or in the definition of t′′ (if t′′ becomes a subtype of t

after the definition of t′).

This checks requieres that each TypeOrder between two concrete types has a coercer.

The predecessor of this task are: HierarchyCheckerTask and SubTypeCalculatorTask.

DomainCoDomainSubtypeCheckerTask The DomainCoDomainSubtypeCheckerTask de-
termines the following property holds for each pair of methods f1 and f2 for the same func-
tion f: domain(f1) <=(abstract) domain(f2) implies codomain(f1) <=(abstract)

codomain(f2).

The predecessor of this task are: DomainCheckerTask and CoDomainCheckerTask.

28

TypeChecker The TypeChecker determines whether the domain of the method is greater
or equal than the domain of the function (the method belongs to) and whether the
codomain of the function is greater or equal than the codomain of the method.

The predecessors of this task are DomainCoDomainSubtypeCheckerTask and NamedFunc-
tionReferenceReferencerTask

5.3 GUI

The LOMF2 GUI (see figure 5.2) is an editor for LOMF2 source code. It is devided into
two parts (tabs).

The “Model” tab is for typing source code and checking its correct syntax. This can be
done by clicking the “Check” button at the bottom of the editor. If errors occur
during the check, they will be displayed in the error table below the source code and
underlined in the source code. By clicking an item of the table the view jumps to
the referenced position.

The “Testing” tab is for executing the typed source code of the model tab. Built-in types
and functions allow out of the box operations like calculating with natural numbers
(see section 3.1). This can be done by clicking the “Evaluate” button at the bottom
of the editor.

The editor also allows basic file operations like load and store. The model and testing tab
will be saved in two files (filename.model and filename.test).

29

Figure 5.2: The LOMF2 GUI

30

6 How-to

The following sections contains step-by-step instructions to extend the LOMF2 system
with additional functionality (for instance built-in types and functions).

6.1 Add New Built-in Type

To add a new BuiltInType T to the system, follow these steps:

6.1.1 Initial Steps

• Add a string-constant TYPENAME <T> in the class BuiltInType<JavaType>.

• Create a new subclass in de.fhdw.lomf.model.type which extends
BuiltInType<JavaType> and is Singleton.

• Modify the constructor of the class to add all specialization-relationships to the
this.hierarchies-set.

• Specify if the new type is abstract or concrete in the method of the operation
isAbstract.

6.1.2 Further Steps for Abstract Types

If T is abstract:

• Implement hasConstructor to return false.

• Implement fetchConstructorDomain to return null.

• Implement getConstructorMethod to return null.

Example: de.fhdw.lomf.model.type.NatType

31

6.1.3 Further Steps for Constructable Concrete Types

If T is concrete and constructable:

• Implement hasConstructor to return true.

• Implement fetchConstructorDomain to return the domain of the constructor.

• Implement getConstructorMethod to return a
TypedBuiltInConstructorFunctionExpression that contains
ProjectionWithBuiltInFunctions as parts and a
BuiltInFunctionImplementation as evaluation-method.

Example: de.fhdw.lomf.model.type.NonZeroNatType

The ProjectionWithBuiltInFunctions will be used in the evaluation to determine the
algorithm to project on the type. The BuiltInFunctionImplementation will be used in
the evaluation to determine the result of a constructor-application on the constructor’s
domain.

6.1.4 Further Steps for Non-Constructable Concrete Types

If T is concrete and not constructable:

• Implement hasConstructor to return false.

• Implement fetchConstructorDomain to return null.

• Implement getConstructorMethod to return null.

Example: de.fhdw.lomf.model.type.String

6.1.5 Add BuiltInType to Model

To finally add a BuiltInType to the model, it has to be added to the static set of BuiltIn-
Types BUILT IN TYPES in the BuiltInTypeAndFunctionGeneratorTask in package
de.fhdw.lomf.text.checker.

32

6.2 Add New Built-in Function

• Create a new subclass in de.fhdw.lomf.model.type.functions which extends
BuiltInFunctionImplementation.

• Implementation of relevant methods. The execute method of the new subclass
contains the logic of the new built-in function. The class NatPlus can exemplify this
by the addition of natural numbers.

• The new subclass has to be registered in LOMF2 by adding it with addFunction to
the performOperation method in BuiltInTypeAndFunctionGeneratorTask.

33

7 Outlook

The following topics could be part of future development by master courses:

• Naming concept.

• Generics.

• Parallelized evaluation.

34

	1 Introduction
	2 Language
	2.1 Syntax
	2.1.1 Grammar
	2.1.2 Keywords

	2.2 Semantics
	2.2.1 Types
	2.2.2 Type Hierarchy
	2.2.3 Functions
	2.2.4 Anonymous Types
	2.2.5 Built-in Types and Functions

	3 Model
	3.1 Type
	3.1.1 Type Expressions

	3.2 Functions
	3.2.1 Function Expressions
	3.2.2 Operations

	3.3 Error Model

	4 Evaluator
	4.1 Evaluation Algorithms

	5 Infrastructure (IDE)
	5.1 Scanner, Parser & Checker
	5.2 Checker Infrastructure
	5.2.1 Service
	5.2.2 Tasks

	5.3 GUI

	6 How-to
	6.1 Add New Built-in Type
	6.1.1 Initial Steps
	6.1.2 Further Steps for Abstract Types
	6.1.3 Further Steps for Constructable Concrete Types
	6.1.4 Further Steps for Non-Constructable Concrete Types
	6.1.5 Add BuiltInType to Model

	6.2 Add New Built-in Function

	7 Outlook

